

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW

SECRET KEY RECONCILIATION PROTOCOL

THESIS

Kevin C. Lustic, Civilian, USAF

AFIT/GCO/ENG11-08

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT/GCO/ENG11-08

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET

KEY RECONCILIATION PROTOCOL

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Kevin C. Lustic, BS

Civilian, USAF

June 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AFIT/GCO/ENG11-08

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET

KEY RECONCILIATION PROTOCOL

Kevin C. Lustic, BS

Civilian, USAF

Approved:

 /signed/ 20 May 2011

 Lt Col Jeffrey W. Humphries, PhD (Chairman) Date

 /signed/ 20 May 2011

 Michael R. Grimaila, PhD, CISM, CISSP (Member) Date

iv

AFIT/GCO/ENG11-08

Abstract

Currently, private communications in public and government sectors rely on

methods of cryptographic key distribution that will likely be rendered obsolete the

moment a full-scale quantum computer is realized, or efficient classical methods of

factoring are discovered. There are alternative methods for distributing secret key

material in a “post-quantum” era. One example of a system capable of securely

distributing cryptographic key material, known as Quantum Key Distribution (QKD), is

secure against quantum factorization techniques as its security rests on generally accepted

laws of quantum physics. QKD protocols typically include a phase called “Error

Reconciliation”, a clear-text classical-channel discussion between legitimate parties of a

QKD protocol by which errors introduced in the quantum channel are corrected and the

legitimate parties ensure they share identical key material. This work improves one such

reconciliation protocol, called Winnow, by examining block-size choices for Winnow and

thus increasing QKD key rate. Block sizes are chosen to maximize the probability that

each block contains exactly one error. Further analyses of Winnow are provided to

characterize the effects of different error distributions on protocol operation and shed

light on the time and communication complexities of the Winnow secret key

reconciliation protocol.

v

Acknowledgements

 Many thanks to MSgt Michael “Wooly” Woolingham and Capt Mark Duncan for

their friendship and mentoring, and for helping me review and revise my research. I

would also like to thank John for reviewing my source code and providing an

optimization to my parity calculations, and for helping me with a side project while I was

focusing on this research. Without the invaluable support of my advisor Lt Col Jeffrey

Humphries and committee member Dr. Michael Grimaila, I would never have been

provided with the opportunity to contribute to this intriguing and relevant project, and for

this I am grateful. Finally I would like to thank my fiancée for supporting me in my

academic pursuits at AFIT, and in all aspects of my life.

 Kevin C. Lustic

vi

Table of Contents

I. Introduction ... 1

II. Background .. 7

2.1. Quantum Key Distribution ... 7

2.2. BB84 QKD Protocol .. 9

2.3. Sifting and Error Estimation .. 13

2.4. Reconciliation and Privacy Amplification ... 16

2.5. Three Popular Reconciliation Protocols .. 18

2.5.1. Binary. ... 18

2.5.2. Cascade. .. 21

2.5.3. Winnow. .. 24

III. Experimentation .. 31

3.1. Research Questions and Goals ... 31

3.2. Implementing Winnow ... 32

3.3. Experiment 1: Error Rate Estimation ... 34

3.3.1. Determining error rate theoretically.. 34

3.3.2. Confirmation of estimation function. .. 36

3.3.3. Simulation parameters and factors. ... 36

3.3.4. Approach and methodology. ... 37

3.3.5. Expected results. ... 37

3.3.6. Assumptions and limitations. .. 38

3.4. Experiment 2: Method for Dynamic Block Size Choice 39

3.4.1. Defining “ideal block size” theoretically. ... 39

3.4.2. Selecting the ideal block size theoretically. .. 40

3.4.3. Approach and methodology. ... 42

3.4.4. Simulation parameters and factors. ... 44

3.4.5. Expected results. ... 44

3.4.6. Assumptions and limitations. .. 45

3.4.7. Advanced selection method. ... 46

3.5. Experiment 3: Effects of Error Distribution on Winnow Operation 47

vii

3.5.1. Potential types of error distributions. .. 47

3.5.2. Simulation parameters and factors. ... 48

3.5.3. Approach and methodology. ... 49

3.5.4. Assumptions and limitations. .. 50

3.5.5. Expected results. ... 50

IV. Results and Discussion ... 52

4.1. Experiment 1: Error Rate Estimation ... 52

4.2. Experiment 2: Method for Dynamic Block Size Choice 56

4.2.1. Experiment 2 Variant. ... 61

4.3. Experiment 3: Effects of Error Distribution on Winnow 64

4.3.1. No permutation applied prior to the first pass. ... 64

4.3.2. Applying a permutation prior to the first pass. ... 65

V. Conclusions .. 68

5.1. Recommendations for Future Research ... 71

Appendix A: Sample BB84 Key Distribution .. 74

Appendix B: Additional Analyses .. 75

Appendix C: Bit Buffer Class Code.. 78

Appendix D: Winnow Class Code .. 87

Bibliography ……………………………………………………………………………104

viii

List of Figures

Figure 1. Progressive steps of a quantum key distribution protocol 6

Figure 2. Actors and channels in BB84 .. 11

Figure 3. Probability of bases matching, as a function of basis choice probability ... 15

Figure 4. Correcting an error using Binary .. 20

Figure 5. Correcting an error using Hamming syndromes ... 27

Figure 6. Relationship of parity error ratio and error rate .. 36

Figure 7. Parity error ratio as a function of error rate .. 39

Figure 8. Probability of one error per block as a function of block size 40

Figure 9. Types of error distribution .. 48

Figure 10. Estimated error rate compared to actual error rate 52

Figure 11. Estimated error rate compared to actual error rate 53

Figure 12. Deviation of error estimation as a function of input buffer length 54

Figure 13. Deviation of error estimation as a function of input buffer length 55

Figure 14. Number of passes with 8 bit blocks relative to error rate 58

Figure 15. Number of passes with 16 bit blocks relative to error rate 59

Figure 16. Throughput for Winnow .. 61

Figure 17. Remaining errors as a function of error rate estimation difference 65

Figure 18. Throughput for Winnow with different error distributions 66

Figure 19. Visual representation of ideal block size .. 70

Figure 20. Failure of Winnow with single burst errors, no initial permutation 71

ix

List of Tables

Table 1. Ideal error rates for each block size up to 1024 bits 41

Table 2. Experimental block size schedules as a function of error rate 58

Table 3. Ideal block size schedules for error rates 0 - 20% .. 60

Table 4. Variant-generated ideal block size schedules for Winnow 63

x

Conventions Used in This Paper

 The terms public channel and classical channel are used synonymously to refer to

an authenticated classical link between Alice and Bob used to carry out sifting,

reconciliation, and privacy amplification. The term raw key refers to the random string of

bits produced by Alice and sent to Bob over the quantum channel; the term sifted key

refers to the string of key bits that are the outcome of the sifting process; the term

reconciled key refers to the outcome of the reconciliation process; and the term final key

refers to the outcome of privacy amplification.

 The terms estimated error rate and error estimate are used synonymously, and in

general differ from error rate or actual error rate.

1

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET

KEY RECONCILIATION PROTOCOL

I. Introduction

Cryptography is the art and science of protecting information by generating a new

message, or ciphertext, such that interception of the ciphertext reveals minimal useful

information to an adversary. Cryptography exists in many forms tailored to many

applications including, but not limited to, protection of information in transit and in

storage, proof of identity, and validation of information. For some applications, such as

the secure storage of passwords on a web server or responses in a zero-knowledge proof

authentication schemes, original information need not be recoverable by any party. For

many others, namely those protocols designed to protect information communicated

between multiple parties, the cryptographic scheme used to encipher data must facilitate

the extraction of a meaningful plaintext.

There are countless cryptographic protocols available today that facilitate the

confidential transmission of information. One type of protocol called symmetric-key

encryption has many advantages such as speed of operation, relatively low power

consumption, and in some cases an information-theoretic basis for security. One major

shortfall of symmetric-key encryption is, as its name implies, that the sending and

2

receiving parties must both possess a copy of preshared key material in order to exchange

meaningful messages. This issue may not seem critical, but one can imagine a scenario

where sending and receiving parties wish to communicate securely but have not met prior

to the information exchange, and hence share no private data for use as a key. For

example, for transactions that take place over the Internet this is a major issue. The

problem of establishing secret preshared keys for use in a symmetric cipher is commonly

referred to as key distribution. To solve the problem of key distribution, symmetric-key

protocols are often used in conjunction with asymmetric-key protocols, in which the

sender and receiver do not share a common key but can still transmit a message securely.

The security of asymmetric-key protocols in their current form is not provable. Instead

these proofs typically rest on the limitations of modern computational resources. They

are also generally inefficient for transmitting large messages due to time and/or energy

constraints. However, such protocols are useful in their current form and context for

sharing a relatively small key that two parties can use with a symmetric-key protocol for

secure communications.

In the 1940‟s Claude Shannon, a researcher at Bell Labs, proved that an

encryption protocol can only be unbreakable if the key used is truly random and is greater

in length than the message to be encrypted, and no part of the key is ever reused

(Shannon, 1949). The most well-known example of just such a protocol is the one-time-

pad (OTP). Introduced by Gilbert Vernam of AT&T in the early twentieth century, the

OTP was proven by Shannon to achieve perfect secrecy when implemented correctly

(Shannon, 1949). Perfect secrecy refers to the fact that no information about a plaintext

can be gathered from its ciphertext or, in terms of Shannon entropy H(P|C) = H(P) where

3

P denotes the plaintext and C denotes the ciphertext. Due to its information theoretic

security, OTP represents the ideal symmetric-key protocol from a security standpoint but,

like other symmetric-key protocols, suffers the weakness of requiring key exchange in

order to be rendered useful. Indeed, since the key required for use with OTP is the same

length as the message to encrypt, the only known classical methods for establishing OTP

keys between two geographically separated parties are by pre-sharing key material and by

physical courier.

Therefore, modern cryptographic suites sacrifice some security in the interest of

practicality. Symmetric-key schemes that require a reasonably small key are augmented

with asymmetric, or public-key, protocols such as Rivest, Shamir, and Adelman‟s RSA

algorithm for key distribution. The security of these public-key protocols is often based

on the difficulty of solving problems that are currently considered mathematically

difficult and computationally expensive. For example the security of RSA, which is used

in online banking transactions, in the OpenSSH project, and a host of other Internet-based

secure communication protocols, rests solely upon the perceived difficulty of factoring a

large integer into two large prime factors. In fact, it is readily seen that an RSA

ciphertext contains no information-theoretic security: because an RSA public key

contains all of the information required to determine the private key, all the information

needed to extract the plaintext from its ciphertext is available to an eavesdropper with

extraordinary computing capabilities. While public-key protocols such as RSA are

publicly secure within the context of today‟s computing capabilities, new techniques in

factoring and distributed computing are advancing to the point of threatening these

protocols. For recent progress in factoring semiprimes, see (Kleinjung et al., 2010).

4

While the best known factoring algorithms are currently still too slow to be used against

RSA in practice, algorithms exist for full factorization in polynomial time on quantum

computers (Shor, 1994). Experiments such as the factorization of 15 = 3 x 5 using Shor‟s

algorithm on a quantum system show the realization of a device able to render our current

key distribution techniques obsolete are not far-fetched (Politi, Matthews, & O'Brien,

2009). Such experiments underscore the need for secret key distribution techniques that

are more robust than those based on computational complexity assumptions, and which

are able to withstand an adversary that possesses a realized quantum computer.

 Such cryptographic protocols have been studied for both the classical and

quantum environment. Post-quantum cryptography, which is generally used to describe

classical quantum-resilient protocols, includes hash algorithms used for authentication

and public-key algorithms used for key distribution. For examples of progress in this

field, refer to (Bernstein, Buchmann, & Dahmen, 2010). Also hypothesized for secure

key distribution is quantum cryptography. This research focuses on a subset of the latter,

namely Quantum Key Distribution (QKD). QKD exploits generally accepted laws of

quantum physics rather than computationally hard problems to achieve key distribution,

and in its pure theoretical form, quantum key distribution is secure against an infinitely

powerful adversary. However, due to technological limitations, realizing ideal systems in

the physical world is not possible and requires assumptions be softened. Thus practical

implementations of quantum key distribution protocols require that legitimate parties of

the key distribution protocols verify that they have obtained a truly secret and identical

key. The steps of a quantum key-distribution protocol are shown in Figure 1, and are

described in greater detail in subsequent chapters of this thesis.

5

 The research presented in this thesis focuses on the Reconciliation phase of QKD,

addressing critical parameters of the Winnow reconciliation protocol. The following

questions highlight areas critical to the improvement and analysis of Winnow:

 How closely can Alice and Bob estimate the initial error rate without directly

comparing a portion of the secret keys? How close must their error estimations be

for Winnow to succeed? How can Alice and Bob affect this resolution?

 How can Alice and Bob choose an efficient block-size schedule given an estimated

initial error rate? What are efficient block size choices?

 What effect do burst errors have on the operation of the Winnow protocol? Are these

types of error distributions mitigated by shuffling the sifted key?

 How does Winnow perform on other metrics typically used to compare error

reconciliation protocols?

The primary goal of this research is to determine and provide block size schedules for

error rate estimates up to 0.20, which decrease the number of exposed bits of previously

suggested methods. Block size choice is important for the optimality of Winnow. If the

block size is too small, then Alice and Bob are likely to waste extra bits through parity

comparison. However, if the block size is too large, then Alice and Bob may introduce

errors into Bob‟s sifted key rather than correcting them. Therefore the goal is to find a

block size that maximizes Winnow‟s effectiveness. Finally, this research provides an

evaluation of this author‟s implementation of the Winnow algorithm in terms of

throughput; information leaked and thus discarded throughout protocol operation;

threshold of failure for Winnow; and a treatment of the time and communication

complexity of the Winnow protocol. The block size choice is defined theoretically and

6

determined empirically through Monte-Carlo simulation. All other topics are also

investigated by Monte-Carlo simulation.

Chapter 2 presents background material on quantum key distribution and the

Winnow reconciliation protocol, along with background material on two other popular

Reconciliation protocols. Chapter 3 describes the experiments conducted to evaluate this

author‟s implementation of the Winnow protocol, and provides a methodology for

choosing block size schedules for Winnow. Chapter 4 gives the results of the

experiments deigned and outlined in Chapter 3, along with a discussion of the results and

their implications for the questions highlighted in this research. Finally, Chapter 5 gives

a brief summary of the findings and how they impact quantum key distribution.

Figure 1. Progressive steps of a quantum key distribution protocol

7

II. Background

2.1. Quantum Key Distribution

In this chapter, a brief review of the principles of quantum physics is presented

and literature relevant to the problem of error reconciliation, specifically the literature on

Winnow, is presented.

While a classical Shannon bit exists as 0 or 1 a quantum bit, or qubit, can exist in

a superposition of those two states. That is, a qubit is modeled in a 2-dimensional space,

and thus any measurement of its state is probabilistic. Upon being measured, the qubit

assumes a deterministic state that is correlated with the method of measurement; this is

termed collapsing the state, an action which is synonymous with destroying the original

state of the qubit. Much like a curve on a Euclidean plane can be projected onto the x- or

y-axis, measuring the state of a qubit collapses said state onto one of its orthogonal 1-

dimensional “axes”. These axes, which together comprise the basis of the qubit, can be

associated with the values 0 and 1 for encoding information in the qubit, and the qubit

will attain one of these measurements with a probability that is associated with the

original state of the qubit. Two bases are conjugate bases if they are mutually unbiased;

that is, if a qubit is measured in its conjugate basis, the state of the qubit is collapsed onto

one of the two orthogonal axes with equal probability and the information encoded in the

initial state of the qubit is essentially lost.

In the late 1960‟s, a graduate student named Stephen Wiesner proposed the

exploitation of quantum mechanics to create a novel means of communication (Wiesner,

1983). The concept was innovative, and because a part of the research required the

8

ability to store quantum particles for an arbitrary length of time, Wiesner‟s work did not

gain much immediate attention and did not see publication until over a decade later.

Wiesner‟s work proposed two ideas. One involves the creation of fraud-proof banking

notes, which entails storing information in a quantum particle that could not be duplicated

by a fraudster. The other, which Wiesner called multiplexing, proposed the transmission

of two (or more) messages in such a way that reading one of the messages necessarily

destroys the others. Wiesner‟s multiplexing involves encoding information in multiple

conjugate bases of qubits, since observing the qubits in one of the bases implies the

qubits are collapsed onto that basis and the data encoded in the other bases are lost. This

notion of destroying information by mere observation motivated a new area of study in

applied quantum physics, and not long after the publication of this work, quantum

cryptography was born (Brassard, A bibliography of quantum cryptography, 1993).

The foundation of physical security for QKD is relatively straightforward.

Quantum communication systems exploit the Heisenberg uncertainty principle, which

implies that measuring a quantum system disturbs it and thus one cannot know

everything about the state of the system prior to measuring it (Brassard, A bibliography

of quantum cryptography, 1993). It is due to this principle that an eavesdropper

unintentionally and unavoidably introduces flaws into a quantum channel which are

detectable by the legitimate users. Therefore the security of a quantum channel rests, in

theory, on fundamental laws of quantum physics rather than assumptions of the

eavesdropper‟s computational power.

9

2.2. BB84 QKD Protocol

Though Wiesner did not apply his discovery of multiplexing to the field of

cryptography, this application was quickly identified by Charles Bennett and Gilles

Brassard. Bennett and Brassard described the advantage of Wiesner‟s multiplexed

channels in cryptography; if an eavesdropper measures the state of a qubit improperly,

she destroys the information encoded in that qubit. The implication is that this loss of

information can be detected by the legitimate sender and receiver, who can consequently

determine that an eavesdropper is present and listening in on the conversation. Bennett

and Brassard subsequently proposed a system for sending messages assuredly free of

passive and active eavesdropping, and noted the particular value of the system for the

distribution of cryptographic key material. This protocol became known as the BB84

quantum key distribution protocol, named after its authors and year of publication

(Bennett & Brassard, 1984). The intention of BB84 is to utilize a quantum channel to

distribute a random key the same length as the message to be encrypted, so that the key

can be used as a OTP key. The combination of QKD and OTP, when implemented

according to their respective assumptions, offers a cryptographic suite that is impervious

to an infinitely powerful adversary. While achieving a OTP key is ideal, it is often

unrealistic in practical contexts, and so a key long enough for use with another modern

symmetric cipher that requires a smaller key can also be established with BB84.

In BB84, photons are used to realize qubits. Each photon is polarized using one

of two mutually unbiased polarization bases. Bennett and Brassard chose the rectilinear

basis, comprised of 0- and 90-degree polarizations, and the diagonal basis, comprised of

10

45- and 135-degree polarizations. A qubit polarized in one basis yields a random

measurement in its conjugate basis.

The BB84 system is composed of a one-way quantum channel and a two-way

classical channel. Owing to the physics of the channel, the quantum channel is subject to

active eavesdropping but not passive eavesdropping. The classical channel is subject to

passive eavesdropping but not active eavesdropping, if some initially shared secret

material is used for authentication. The authors suggest the use of Wegman-Carter

message authentication tags to satisfy this assumption on the classical channel (Wegman

& Carter, 1981). The sender, who is responsible for generating and transmitting random

key material and will hereafter be referred to as Alice, must have a way to generate single

photons and polarize them in each of the polarization bases discussed previously. The

receiver, hereafter referred to as Bob, is required to be able to detect and measure the

state of single photons polarized by Alice. A high-level view of the communication

channels between Alice and Bob is shown in Figure 2. In the figure, light lines represent

a classical link and bold lines represent a quantum link. The arrows represent the

possible flow of information, and legitimate users are Alice and Bob.

11

Figure 2. Actors and channels in BB84

When Alice and Bob wish to communicate a secret message, Alice generates and sends

key material to Bob. She begins by generating random bits for key material, or raw key,

and random bits for basis choice and the combination of basis and key bit choices

determines the polarizations with which she will encode her qubits. For example, a key

bit of zero would either be encoded in the rectilinear basis with a 0-degree polarization or

in the diagonal basis with a 45-degree polarization, depending on the corresponding basis

bit. A bit of 1 would be encoded in the rectilinear basis with a 90-degree polarization and

in the diagonal basis with a 135-degree polarization. Once Alice has polarized a photon,

she sends the photon over the quantum channel to Bob. Bob then chooses a random basis

with which to measure the photon. He will choose the correct measurement basis one out

of every two times on average. When all of Alice‟s key string has been transmitted,

Alice and Bob communicate over the classical channel to determine which qubits were

sent and measured in the same basis. On average, the qubits for which Alice and Bob

choose mismatching bases are measured incorrectly with 50% likelihood, so all qubits for

which the bases do not match are discarded. The process of publicly comparing bases to

12

find mismatches, as well as determining which bits Alice sent and Bob did not receive, is

called sifting, and the remaining string of key bits shared by Alice and Bob is referred to

as the sifted key. Ideally, in an environment in which no eavesdropper is present and the

quantum channel is not susceptible to noise, once Alice and Bob have a sifted key then

they share a random string that can be used as a secret key. Appendix A illustrates a

BB84 QKD exchange without an eavesdropper present.

 However, there would be no need for secure communication if there were no

threat of an eavesdropper, Eve, listening on the quantum channel. Because the security

of the channel lies in Alice and Bob‟s ability to detect Eve, it is essential to understand

the impact Eve‟s activities have on the sifted key. The sifted key contains all bits for

which Alice and Bob used matching bases. Assuming Eve intercepts and resends every

qubit that Alice sends, she will randomly choose the incorrect measurement/sending basis

with approximately 0.5 probability. Therefore, on average, the sifted key bits shared by

Alice and Bob will include bits which Eve measures incorrectly with 0.5 probability and

resends to Bob, who measures incorrectly with 0.5 probability.

 To detect an eavesdropper, Alice and Bob select a random sample of bits from the

sifted key and compare them over the classical channel to estimate the error rate. If the

rate is unusually high, namely 0.5 x 0.5 = 0.25 or higher, they assume that there is an

eavesdropper intercepting and resending their messages and start over.

 There are other sources of error aside from an active eavesdropper. Error

estimates are typically assumed to be correlated with the worst-case scenario of the

presence of an eavesdropper, though it should be noted that many or all of the errors

detected in a string of bits exchanged between Alice and Bob are typically due to

13

legitimate channel noise. In the literature covered by this research, the quantum channel

is generally modeled as a binary symmetric channel (BSC) in which there is a certain

probability p, representing the error rate, that the key bit being transmitted is flipped. In

other words, if Alice sends the value 1 to Bob, then Bob will receive 0 with probability p.

These errors are introduced by channel noise and other sources of interference. Due to

the possibility of legitimate noise being introduced into Alice‟s message, an important

note is that error rate estimates only translate roughly to an estimation of errors

introduced by an active eavesdropper (Nakassis, Bienfang, & Williams, 2004).

 Of course, as with any cryptographic protocol, the ideal assumptions of BB84 are

limited in reality by implementation issues. For example, BB84 assumes the existence of

a single photon source, quantum channels pure enough to carry the weak pulse generated

by a single photon source, and detectors capable of detecting the weak pulse. Since

technology in this area has not progressed to the point of satisfying these ideal

assumptions, today‟s BB84 implementations require additional phases before a shared

secret key can be extracted from the sifted key measured by Bob. These phases are error

reconciliation, and privacy amplification. The following sections provide a brief

treatment of the phases that take place after Alice and Bob complete the quantum

transmission phase of QKD.

2.3. Sifting and Error Estimation

 Sifting is the process of removing those bits from the key material for which

Alice‟s sending basis and Bob‟s measuring basis do not match, and the result of sifting is

the sifted key. Once the sifted key has been extracted by Alice and Bob, they proceed to

14

estimate the error rate of the channel. If the channel is considered a BSC with a chance p

of Alice sending a bit and Bob obtaining the opposite measurement of the bit when

measuring with the matching basis, then the error rate of the BSC is defined to be p. If p

is abnormally high, Alice and Bob conclude the transmission was intercepted by an

eavesdropper and start the key distribution over. More specifically, Alice and Bob decide

on a threshold of acceptable error rate, say ε, such that if p > ε they decide an

eavesdropper is present. Assuming an eavesdropper measures and resends every photon

in either the horizontal or rectilinear basis, ε should not exceed 0.25. If the error rate is

0.15 or higher then it is possible that an eavesdropper has intercepted and resent 60% or

more of the transmissions; it is at this point that some believe the data should be

discarded and the key exchange restarted (Nakassis, Bienfang, & Williams, 2004).

 There has been a refinement of note that improves the sifting process in terms of

throughput, by altering Alice and Bob‟s method for the selection of sending and

measuring bases (Ardehali, Chau, & Lo, 1999). If the probability of choosing one basis

for encoding a qubit is denoted σ and, hence, the probability of choosing the other basis is

1- σ, then the probability that Alice and Bob choose matching bases is given by the

equation P= σ
2
+(1- σ)

2
 = 2σ

2
-2σ+1

. This probability effectively establishes an upper

bound for the transmission rate of the channel, because Alice and Bob only keep the bits

for which they choose the same basis. This probability function achieves a minimum

when σ=0.5, the value used in BB84, which implies that the standard method for

selecting a basis is theoretically the least optimal in terms of throughput. For a visual

reference, a plot of P(σ) is shown in Figure 3.

15

Figure 3. Probability of bases matching, as a function of basis choice probability

 The authors propose using a different σ, with 0 < σ < 0.5, to achieve a better

upper bound on the transmission rate of the key exchange. For example the unbiased

selection of σ=0.5 bounds the number of bits kept by 50%, while a biased selection of

σ=0.1 bounds the number of bits kept by 82%. As seen in Figure 3, biasing the selection

of one basis over another offers an increase in probability that Alice and Bob have

selected matching bases, and thus there is an increase in the potential transmission rate of

the channel using this simple technique.

 However, an eavesdropper can also bias her measurement basis choice and thus,

like Bob, be more likely to choose the same basis as Alice for any given qubit. This

undermines the BB84 eavesdropper detection mechanism, which relies on the fact that

Eve has no information about Bob‟s measurement basis choice before he announces it.

To account for such a strategy, this biased basis selection technique also includes an

alternate method of estimating error. In QKD protocols the error rate is typically

estimated by selecting a random subset of the sifted key and publicly comparing, and

16

then discarding, the bits. Instead of choosing a random subset of all bits from the sifted

key, Alice and Bob choose random subsets of the bits transmitted and received in each

basis, and then estimate two basis-specific error rates. They then compare each error rate

to ε individually. Theoretically, the error rates should be quite similar and should both lie

below the established acceptable threshold. This error estimation strategy effectively

eliminates the advantage Eve gains by choosing the more probable basis every time.

2.4. Reconciliation and Privacy Amplification

 In any case, the transmission of qubits is largely affected by legitimate noise and

non-idealities in the quantum channel regardless of whether an eavesdropper is present or

not. In order to correct these errors without directly comparing their keys, Alice and Bob

perform error reconciliation. There are two forms of reconciliation protocols, interactive

reconciliation and one-way reconciliation. Interactive reconciliation protocols require

that Alice and Bob interact via the public classical channel in order to detect and correct

discrepancies, while one-way reconciliation protocols involve one party dictating how the

second party should identify and correct errors. The public literature contains instances

of both one-way and interactive reconciliation protocols. Three of the most popular

protocols will be described in further detail below, namely Binary, Cascade, and

Winnow. The first two are interactive protocols while Winnow is a one-way protocol.

 The goal of reconciliation is to reduce the number of discrepancies between Alice

and Bob‟s sifted keys in a way that guarantees Alice and Bob share an identical key while

leaking as little information to Eve as possible. In Binary and Cascade, parity bits are

exchanged between Alice and Bob to aid Bob in a binary search to detect discrepancies in

17

his sifted key. In Winnow, parity bits are exchanged to roughly locate errors, and

syndromes of Alice‟s data are sent to Bob to pinpoint and correct the errors. Because

these interactions are conducted over the authenticated public channel it is assumed that

Eve can inspect but not jam the transmission, and so throughout the reconciliation phase

Eve gains as many bits of information about the sifted key as the number of bits

communicated between Alice and Bob. Specifically, if the number of bits sent between

Alice and Bob is m, then Eve has gained m bits of information about the secret key (Van

Assche, 2006). As reported in (Kollmitzer & Pivk, 2010), the minimum information Bob

needs to correct his key to match Alice‟s is given by nH(p) where n is the length of the

sifted key, p is the error rate, and H is the Shannon entropy function. Therefore a

reconciliation protocol must reveal at least nH(p) bits and its efficiency in terms of

information lost can be measured with respect to this bound.

 Following reconciliation, privacy amplification reduces Eve‟s knowledge of the

secret key gained during both quantum transmission and reconciliation to an arbitrarily

small amount. More specifically, if the length of the reconciled key is L bits and it is

estimated that a potential eavesdropped has gained m bits of information about the key,

then privacy amplification should reduce the reconciled key to a length of L-m bits. If

Alice and Bob instead reduce the length of their reconciled key to a length of L-m-s for a

chosen parameter s, then Eve gains 2
-s
 bits of information about the key during

reconciliation and her knowledge of the key can be made arbitrarily small (or large) by

Alice and Bob‟s choice of s (Van Assche, 2006). Lastly, every output bit from the

privacy amplification phase depends on a large number of the input bits. This bit

18

dependency implies that any information Eve has on Alice and Bob‟s reconciled key is

masked by the information she does not have.

2.5. Three Popular Reconciliation Protocols

 In 1991 five researchers, including Bennett and Brassard, wrote a paper together

describing what they termed the “first experimental quantum key distribution channel

ever designed and actually put together” (Bennett, Bessette, Brassard, Salvail, & Smolin,

1992). In their research they designed and implemented an interactive error correction

protocol, hereafter referred to as Binary, which laid the foundation for further research

into the improvement of the reconciliation stage of QKD protocols.

2.5.1. Binary.

 In their experimental setup the authors, hereafter referred to as BBBSS,

implemented the BB84 QKD protocol utilizing polarized photons in the rectilinear and

circular bases. The implementation worked just as in the seminal BB84 research,

substituting the diagonal basis for the circular basis, which is comprised of left and right

spins of the photon and is conjugate to the rectilinear basis.

 Once Alice transmits a stream of random qubits to Bob and both parties have

obtained sifted keys, the sifted keys are presumed to contain discrepancies introduced by

an eavesdropper and other sources of noise in the transmission channel. In order to

assure that they share a common key, Alice and Bob perform a reconciliation protocol

that detects and corrects discrepancies by binary search. This protocol, called Binary,

works as follows.

 Alice and Bob exchange a subset of the sifted key to estimate the error rate of the

quantum channel. If the error rate is unnaturally high it may be due to the presence of an

19

eavesdropper, and Alice and Bob start over; this threshold is dependent upon the potential

attack strategies of the eavesdropper. If the error rate is reasonable then Alice and Bob

publicly agree upon a random permutation to apply to the bits in an attempt to rearrange

the discrepant bits, hereafter referred to as error bits, into a relatively random

distribution. Alice and Bob then divide the sifted key into blocks of N1 bits, an integer

value that is dependent upon the error rate. In general, N1 should be chosen such that

each block is expected to contain one or less errors on average. Next, Alice and Bob

compare the parities of each block over the classical channel. If Alice and Bob find a

block for which the parity disagrees, then that block contains an odd number of errors and

they bisect the block into two sub-blocks of length N1 / 2 and compare the parities of the

first half to reveal which half contains the odd number of errors. By continuing in this

way, Alice and Bob are able to locate the error bit after exchanging approximately log2N1

parity bits. In order to reduce the information about the key gained by an eavesdropper

during reconciliation, Alice and Bob discard a bit from every block and subblock for

which a parity was leaked, a process referred to as privacy maintenance. Once the errors

of all blocks with disagreeing parities have been removed, Alice and Bob have finished

the first pass of the protocol.

 Note that any even number of (two or more) errors are not detected during the

parity comparisons. So Alice and Bob permute the key again before performing a second

pass of parity comparisons and binary searches. They continue in this manner for several

passes, increasing the block size as the error rate of the sifted key decreases. Since Alice

and Bob discard a bit for every parity they calculate and share, they effectively waste a

bit for any block which doesn‟t contain any errors. So they switch to a more efficient

20

strategy called confirm and bisect when they are fairly confident that most errors have

been removed. Rather than calculating the parities of every bit in the sifted key, Alice

and Bob calculate and compare the parity of a random subset of the sifted key. If they

find a subset for which their parity calculations do not match they perform Binary on that

subset. After a sufficient number of random parity comparisons revealing no errors –

BBBSS suggest 20 such comparisons – Alice and Bob are reasonably confident that their

reconciled keys are identical. Figure 4 shows the detection and correction of an error.

The number in each block/sub-block represents the corresponding parity of that block.

Blocks/sub-blocks with the parity shown in italics represents a block for which a bit is

exposed. Note that subdivided blocks do not contribute to the count of exposed bits,

since the number of exposed bits in that block is the sum of those exposed in the

subsequent step, and exposure estimation is deferred to that step. The detected error is

shown with a strikethrough.

Figure 4. Correcting an error using Binary

21

It is readily seen that the number of bits Alice and Bob discard during Binary is

given by

 , where t is the number of passes to performed, L is

the length of the sifted key, Ni is the block size for the i
th

 pass, ri is the number of errors

corrected in the i
th

 pass, and s is the number of bits discarded during the final random

sampling phase. Though the structure of the blocks is defined differently during the

random sampling phase, s is similarly dependent upon the random block size, the number

of errors detected and corrected, and the overall number of parities publicly compared.

2.5.2. Cascade.

 Shortly after Binary was published two of its authors published a refinement to

the protocol in which they claimed to reduce the number of bits exposed during

reconciliation to near the theoretical minimum, with the tradeoff of requiring greater

processing costs (Brassard & Salvail, 1994). Called Cascade, this protocol has the same

basic structure as Binary with one major exception: rather than discarding bits as errors

are detected and corrected, Alice and Bob retain all bits for use in future passes, which

allows the algorithm to trace backwards.

 Just as in Binary, Cascade begins with an estimation of the quantum channel‟s

transmission errors by direct public comparison. Once they have estimated the error rate

of their transmission Alice and Bob divide their sifted keys into blocks, the size of which

depends on the error estimate. The choice of block size is important: if the blocks are too

small, then many blocks will probably not contain errors and parity bits are needlessly

exposed to Eve. However, if the blocks are too large then more passes must be

performed to correct all errors, because one pass of Cascade only corrects at most one

error per block, requiring excess parity leakage in another way. The authors of Cascade

22

empirically determined the ideal initial block size to be N1 ≈ 0.73/p where p is the error

estimate (Van Assche, 2006). Once parities are exchanged for each block, and the errors

are corrected by performing Binary, Alice and Bob permute their bits and enter the

second pass.

 This is where Cascade differs from Binary. Alice and Bob permute the sifted key

and increase the block size to N2 = 2N1 then perform Binary to locate and correct errors.

However if Alice and Bob detect an error b1, then because all parities in the previous pass

indicated that there were no errors after the previous pass, they conclude b1 masked an

additional error b2 in the previous pass. So they can locate b2 using knowledge of the

initial position of b1. To locate b2 Alice and Bob revisit the smallest sub-blocks for

which b1 was previously involved in a parity calculation, and proceed to bisect and locate

the masked error from there. Unmasking that error may unmask other errors and so

during any pass after the first, correcting a bit will cause the detection and correction of

errors to cascade through previous passes. Correcting a bit in a later pass implies that

two bits will be corrected in the sifted key, so the probability that any given block in the

sifted key contains an error decreases exponentially as the protocol increments to a new

pass (Brassard & Salvail, 1994).

 Since its publication Cascade has seen numerous improvements in the public

literature. One notable improvement greatly reduces the number of bits sent over the

public channel by switching to a more efficient tactic after the second pass (Sugimoto &

Yamazaki, 2000). The authors showed empirically that half of the errors were generally

corrected after the first pass, then half of the remaining errors were corrected in the

second pass and cascaded to correct the additional remaining quarter of the errors,

23

leaving only a few errors after just the second pass. Hence after two passes, Cascade

could switch to confirm and bisect so that Alice and Bob compare a random parity rather

than parities for every block in the sifted key. By this method, Sugimoto and Yamazaki

were able to increase initial and subsequent block sizes and minimize the number of

parities exchanged over the public channel. In doing so, the authors showed that their

improvement leaked fewer bits to Eve and performed closer to the theoretical bound on

throughput than the original Cascade.

 Another improvement that can be made to Cascade is to modify the way bits are

permuted between passes, in order to enhance the probability that two consecutive error

bits do not mask each other in subsequent passes. Two methods covered in (Nguyen,

2002) are as follows:

1. Create a new block containing the first bit of each block. Then create a new block

containing the second bit of each block. Continue in this way until each of the

bits has been placed into a new block. Pair each block with a non-consecutive

block and perform Cascade.

2. Let ki be the block size for the next pass, and Kt the t
 th

 block in the next pass.

Then Kt = {bu : u ≡ t modulo ki}, where u is the index of bit b in the previous

pass.

Nguyen notes that this is rather inefficient for use in all passes, but will suffice to use

between the first and second passes then revert to the original strategy of random

permutations. Another method replaces the random permutation conducted between

rounds with a more complex interleaving technique that attempts to mitigate “error

sticking”, or error clusters (Chen, 2000). Such methods are shown experimentally by

24

Nguyen and Chen to improve the performance of Cascade in terms of minimizing

information leaked during reconciliation.

 In addition to such tweaks as manipulating block size and block structure, the

literature contains Cascade variants that globally revise the algorithm. One such variant

goes so far as to completely do away with the error estimation phase that precedes the

classical Cascade algorithm (Nakassis, Bienfang, & Williams, 2004). In this variant, the

authors propose subdividing the sifted key and comparing respective parities until a

crucial number of sub-blocks between Alice and Bob have discrepant parities. At this

point, an error estimate is derived by means discussed in the research. Of note is the fact

that this method of estimating the error rate can be much more efficient than, say,

throwing away half of the bits by public discussion, as is performed prior to the normal

operation of Cascade. The entire algorithm described by the authors is much different

from Cascade, involving the jettisoning of entire blocks of bits for which the expected

post-reconciliation yield is zero or negative.

2.5.3. Winnow.

 Binary and Cascade are well-studied and their correction power and throughput

have been improved in many ways, namely through the choice of block size given the

error rate in the input string. However the literature seems to lack a rigorous proof for an

upper bound on the information leaked to an eavesdropper by these protocols, and in fact

the bound proposed by Brassard and Salvail can be exceeded experimentally (Yamazaki,

Nair, & Yuen, 2006). In addition to the problem of bounding information leakage,

Binary and Cascade suffer from an extremely high communication complexity. Owing

to the interactivity of these two protocols, for which single parity bits must be sent

25

sequentially in order to correct a single error in each block, the number of messages sent

to correct a single error in an N-bit block is log2N+1. In a real-world implementation of

Cascade, where network latency may be on the order of tens of milliseconds and a

TCP/IP message adds 40 bytes of header information per segment (i.e. per bit sent for

parity in Cascade), Binary and Cascade are highly inefficient when implemented over a

TCP/IP network.

 A reconciliation protocol providing solutions to both problems was proposed by

W.T. Buttler et al. in 2003 (Buttler, Lamoreaux, Torgerson, Nickel, Donahue, &

Peterson, 2003). Called Winnow, this protocol is based on Hamming codes. A short

description of Hamming codes based on its treatment in (Hankerson, et al., 1991) is

presented below, followed by the application of Hamming codes to reconciliation.

 A Hamming code is a perfect code capable of correcting a single error and

detecting two errors. For any Hamming code, there are two matrices called the generator

matrix and the parity-check matrix which are responsible for encoding messages and

detecting and corrected errors in the codewords, respectively. When a sender wishes to

send a message, he computes the dot product of the message and the generator matrix and

sends the resulting codeword to the receiver. The receiver calculates the syndrome of the

received data by computing the dot product of the received data and parity-check matrix.

If the data is a codeword then the syndrome is zero, as the term „parity-check matrix‟

implies. However, if the syndrome is non-zero, then one or more errors have been

introduced into the sender‟s codeword, and the syndrome identifies the coset leader

associated with the codeword most likely associated with the received data. The

codeword is the result of XORing the received data with the coset leader indicated by the

26

syndrome. Codewords are of length 2
m

-1 for some m and have a distance of 3. This

implies that Hamming codes can detect 2 errors, but may not detect three or more errors,

and can correct

 errors. In fact, if the Hamming algorithm is utilized to correct

more than one error, an error may be introduced into, rather than eliminated from, the

received data.

 A few modifications are made to apply Hamming codes to the problem of

reconciliation. First, the data from Alice is not encoded and sent directly to Bob. Doing

so would make Eve‟s job much easier, as all she would need to do is decode the

codeword to recover Alice‟s (secret) information, and thus this method would essentially

compromise all of Alice‟s bits. Furthermore, Alice would be sending more bits of

information than are contained in the initial data, so the entire private key would

eventually be eliminated for privacy maintenance.

Instead, Alice calculates syndromes for her data and sends the syndromes. That

is, Alice divides her key into blocks of length N=2
m

-1 for some m, and constructs the

parity-check matrix H where each element Hi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ 2
m

-1 is given by

 . The syndrome S for a block B, then, is the product H•B=S. Alice

sends the syndrome to Bob, who computes the syndrome of his data in the corresponding

block. If the syndromes match, that is , then Bob has either zero

errors or three or more errors; for an appropriately chosen block size and a random error

distribution Bob can be reasonably confident that there are no errors when S=0. If the

syndromes do not match and Bob‟s string contains exactly one error, then S indicates the

position in the string where the error can be found. Flipping this bit will correct the error.

27

Figure 5 presents an example of correcting a single error in Bob‟s data. Alice‟s data is

represented by wa and the corresponding syndrome is Sa, and Bob‟s data is represented

with similar notation.

Figure 5. Correcting an error using Hamming syndromes

 This is rather inefficient in terms of throughput as it implies that a single pass will

expose approximately m=log2N bits per block, which will need to be eliminated for

privacy maintenance. Recalling that Winnow only corrects an error in blocks containing

exactly one error, another modification is made to reduce the number of bits exposed by

the Winnow protocol by introducing a parity comparison prior to each pass. If the block

size is chosen appropriately and the error bits are randomly distributed in Bob‟s key,

there will likely be no more than one or two errors per block. Bob sends Alice the parity

of each block, and Alice calculates the parities of her blocks. Alice then sends the

syndrome of each block for which there is a parity error, that is, for which Bob‟s block

contains an odd number of errors. In this way Alice will not expose m bits of information

in the form of a syndrome if there are no errors in Bob‟s data, and Alice and Bob will not

attempt to correct any even number of errors in general, since Hamming codes can never

correct an even number of errors in any given block.

28

 When one pass of Winnow is complete, the number of bits exposed for a block

containing an odd number of errors is m+1 bits, and the number of bits exposed for a

block containing an even number of errors is simply 1 bit. Winnow performs privacy

maintenance throughout the reconciliation phase. Buttler et al. argue that this method, in

contrast with the method of post-reconciliation maintenance used in Cascade, is better

due to the fact that discarding bits during operation is likely to eliminate some errors

unintentionally. The initial block size is modified to be N=2
m
 for some m, since a bit is

removed for parity comparisons before the syndromes are computed, making the block

size the proper form for performing the Hamming algorithm. If a syndrome is

transmitted, bits are also discarded after syndrome comparisons. The bits removed for

syndrome comparisons are the bits whose positions in the block are of the form 2
k
 for

0 ≤ k < m. This selection is not arbitrary, rather these bits are the ones multiplied by the

columns of the parity-check matrix of Hamming weight 1 and thus they are the bits that

are maximally exposed in Alice‟s syndrome.

 Because the parities and syndromes can be calculated for every block in parallel,

and all single errors can be corrected in every block at once, a single pass of Winnow

requires only two messages: a message from Bob to Alice containing the parity bits for

each block and a message from Alice to Bob containing the syndromes for the blocks

exhibiting parity errors. Thus the communication complexity of Winnow is vastly

improved over Cascade. Furthermore, the amount of information exposed by Alice and

Bob, along with the expected throughput of the algorithm, can be anticipated a priori in

terms of the initial error rate. These models are presented in Buttler‟s research.

29

 One further improvement is that, rather than publicly comparing and thus

discarding a large number of bits for error rate estimation before Winnow, Alice and Bob

begin the first pass of Winnow with a block size of 8 bits and determine the number of

parity errors in Bob‟s data. The error rate p, then, can be estimated probabilistically

based on that value. In the original research on Winnow Buttler et al. claim that knowing

the initial error rate is sufficient for determining the ideal block size schedule given a set

of data for successive passes, though a formula for finding the optimal block size

schedule is omitted. The error rate estimation technique suggested by Buttler et al. is

presented and analyzed in Chapter 3 of this research.

 The most notable factors that influence the performance of Winnow are the block

size and the distribution of errors. If a block contains an odd number of errors greater

than one, Winnow may introduce a new error. This is in stark contrast to Cascade, which

never introduces errors and always corrects an error in blocks containing an odd number

of errors. Furthermore, if an even number of two or more errors exists and the errors are

adjacent, they will never be corrected, which is a problem shared by Cascade. To

address burst-error scenarios, a random permutation is applied to the sifted key prior to

each pass in Winnow to attempt to shuffle error bits into a random distribution.

 However, while Winnow provides a fast and efficient way to correct errors in two

correlated random variables without direct comparison, its authors do not discuss a

method for choosing ideal block sizes. Some improvements that have been applied to

Winnow include the selection of block sizes in order to maximize throughput, that is, to

maximize the amount of bits left after completing Winnow, or equivalently to maximize

the amount of bits left and minimize the number of errors left. In one paper, a block size

30

of 8 bits is experimentally determined to have a higher “correction capability” than a

block size of 16 bits. Hence, the ratio of

 is greater after multiple

passes with a block size of 8 than with a block size of 16, and so running Winnow with a

fixed block size of 8 is better than running Winnow with a fixed block size of 16 for

strings containing an initial number of errors in the range that are typical to today‟s QKD

systems (Zhao, Fu, Wang, Lu, Liao, & Liu, 2007). Another study attempting to

maximize correction ability through block size choice experimentally determined that the

best choice for block size would be approximated by the ratio , where N is the

block size and p is the initial error rate (Yan, Peng, Lin, Jiang, Liu, & Guo, 2009). This

result is quite similar to the choice of the initial block size for Cascade, for which

Brassard and Salvail prescribe as reported in (Van Assche, 2006). For both

these improvements a fixed block size is used for all passes, rather than a dynamic block

size that accounts for the decreasing error rate like the doubling strategy in Cascade. In

fact, aside from a few specific instances in the Buttler et al. research, the public literature

does not include a treatment of the use of different (i.e. increasing) block sizes for

successive passes in Winnow. Such a selection strategy would aid in improving the

throughput of the Winnow reconciliation protocol.

31

III. Experimentation

3.1. Research Questions and Goals

 While “quantum channel only” QKD is a promising future technology, the current

technological readiness of publicly available QKD systems is such that public channel

discussions remain essential. Central to the public channel component of QKD is the

reconciliation phase. Cascade is currently the best known and most researched method

for reconciliation, though the speed and communication efficiencies with which Winnow

operates make Winnow a good competitor in certain operating conditions. And while

researchers have analyzed and improved Cascade, similar analyses have not been applied

to Winnow. Specifically, the public literature lacks a discussion of the choice of ideal

block sizes given an estimated error rate, to maximize throughput while maintaining the

speed and communication efficiency of Winnow. The following questions highlight areas

critical to the improvement and analysis of Winnow:

 How closely can Alice and Bob estimate the initial error rate without directly

comparing a portion of the secret keys? How close must their error estimations be

for Winnow to succeed? How can Alice and Bob affect this resolution?

 How can Alice and Bob choose an efficient block-size schedule given an estimated

initial error rate? What are efficient block size choices?

 What effect do burst errors have on the operation of the Winnow protocol? Are these

types of error distributions mitigated by shuffling the sifted key prior to the first pass

of Winnow?

32

 How does Winnow perform on other metrics typically used to compare error

reconciliation protocols?

The primary goal of this research is to determine and provide block size schedules for

error rate estimates up to 0.20, which decrease the number of exposed bits of previously

suggested methods. A review of the public literature has not revealed a solution to this

problem. Block size choice is important for the optimal efficiency of Winnow. If the

block size is too small, then Alice and Bob are likely to waste extra bits through parity

comparison. However, if the block size is too large, then Alice and Bob may introduce

errors into Bob‟s sifted key rather than correcting them. The final research question is

simply an evaluation of this author‟s implementation of the Winnow algorithm in terms of

throughput; information leaked and thus discarded throughout protocol operation;

threshold of failure for Winnow; and a treatment of the time and communication

complexity of the Winnow protocol. Time and communication complexity are discussed

in Appendix B.

 Chapter 3 provides a brief description of the implementation of Winnow and the

simulation environment, followed by a description of the experiments designed to answer

these research questions.

3.2. Implementing Winnow

 For this research, the Winnow protocol is implemented in C++ using two classes:

one class is used to store and manipulate large buffers of bits efficiently both in memory

and time, and the other class is used to perform the operations specific to Winnow, such

as the calculation of syndromes and removal of bits. A third C++ file containing a main

33

function is used to drive the program, and generates a random sifted key. Errors are

added to Bob‟s sifted key in accordance with the error rate specified by the user; this

error rate is analogous to the error rate of the quantum channel, where the quantum

channel is modeled as a binary symmetric channel. Therefore, the term “error” refers to a

bit that is flipped during transmission. For randomly distributed errors, the errors are

added such that each bit has an equal probability of being in error. For single burst

errors, errors are introduced in a large block and the rest of the errors are distributed

randomly. And for periodic burst errors, blocks of errors are introduced at a regular

interval in accordance with the input error rate and size of the bursts.

 Once the sifted keys are established, Bob computes his parities and „sends‟ them

to Alice. Alice then computes and compares her parities with Bob‟s, and for any blocks

exhibiting a parity error Alice computes the syndrome of that block. Alice „sends‟ a list

of block numbers that exhibit a parity error along with the corresponding syndromes to

Bob, who then computes his syndromes for the blocks of interest. If the syndromes

match, Bob determines that one of two events occurred: either the error was discarded

after comparing parities, or there are three or more errors in the block. In either case, it

would not be beneficial to attempt to correct an error, and Bob does not attempt to fix any

errors. Once Bob has fixed all feasible errors for the pass, Alice and Bob permute their

bits in according to a publicly shared random permutation and proceed with the next pass.

Minor tweaks are made to this process to facilitate experimentation as the particular

experiment demands, but those changes are discussed in the following sections. Source

code for this implementation of Winnow can be found in Appendix B and Appendix C.

34

 The simulations are run on a Dell Latitude E6500 laptop with 4 GB of memory

and an Intel Core2 Duo 2.66 GHz CPU. The operating system running on the laptop is

Ubuntu Desktop 10.10 (Linux kernel 2.6.35-38). Development is done in Eclipse SDK

and simulations for the following experiments are run from the command line. Status

updates are printed to the screen, and statistical data are printed to tab-delimited files.

Timing is done with a resolution of seconds.

3.3. Experiment 1: Error Rate Estimation

3.3.1. Determining error rate theoretically.

 As proposed in the seminal research on Winnow, the error rate between Alice and

Bob‟s sifted keys can be estimated probabilistically without publicly comparing and

discarding a subset of the sifted key prior to reconciliation. Assuming each bit has an

equal probability p of being in error, the probability of n bits being in error and N-n bits

not being in error is given by p
n
(1-p)

N-n
. These errors can be arranged in multiple

configurations within the block. There are “N choose n” different ways for n bits to be in

error in an N-bit block, and so the probability of n errors occurring in an N-bit block in a

sifted key with error rate p is estimated by Equation 1:

 (1)

Hence, the probability of obtaining an odd number of errors in an N-bit block is

represented by Equation 2:

 (2)

35

If the first pass of Winnow is performed with a block size chosen independently of the

initial error rate, then the ratio of blocks for which Alice and Bob have disagreeing

parities or parity errors is known. That is, the probability that any block in a given set of

data contains an odd number of errors is known. Setting this parity error ratio equal to

Equation 2 gives Equation 3:

 (3)

Intuitively, proceeding with the smallest block size of N=8 bits for the first pass will give

the best resolution for the parity error ratio. For sufficiently small error rates a block size

greater than 8 may be acceptable, but without a priori information about the error rate it

is suitable to assume the error rate lies in the range typical of many of today‟s

implementations of QKD systems, and an initial block size of 8 bits is the best choice in

general (Buttler, Lamoreaux, Torgerson, Nickel, Donahue, & Peterson, 2003). Note that

all the variables in Equation 3 are known but p, the error rate, and solving for p gives

Equation 4:

 (4)

Where gives the total number of blocks, and gives the number of blocks

exhibiting a parity error. In this way, Alice and Bob can estimate their error rate for any

block size N.

36

3.3.2. Confirmation of estimation function.

 After running Winnow in the simulation environment and gathering data on

number of blocks exhibiting parity errors and total number of blocks, Figure 6 shows the

parity error ratio as a function of actual initial error rate for a 1,000,000 bit input buffer

and averaged over 50 trials.

Figure 6. Relationship of parity error ratio and error rate

The curve represents the binomial distribution given on the right side of Equation 3 for

N=8. Thus the experimental data confirms the accuracy of the theoretical estimation of

error rate given in Equation 4.

3.3.3. Simulation parameters and factors.

 Variables that affect the error rate estimation are the distribution of errors within

the sifted key, block size, initial error rate, and length of the sifted key. The parameters

that are manipulated for this experiment are error rate, which is controlled to be chosen

randomly between 0% and 20%, and length of the sifted key, which is controlled to be

chosen randomly between 10,000 and 10,000,000 bits. The block size is fixed at 8 bits,

37

as suggested by Buttler et al. The errors are assumed to be distributed randomly for this

experiment.

3.3.4. Approach and methodology.

 In order to test the effectiveness of the error estimation strategy given by Equation

4, a single pass of Winnow representing the first pass in a normal reconciliation effort is

performed on two strings with a variable error rate and a fixed length. Once Alice and

Bob have exchanged parity error information, Equation 4 is used to estimate the error rate

based on the parity error ratio and total number of blocks. The recorded data includes the

actual error rate, determined by an Oracle that has access to both Alice and Bob‟s sifted

keys, and the estimated error rate. The metric used to compare the estimation with the

actual error rate is by a factor of deviation, measured as:

 (5)

 This method of error estimation is statistically based, so another important

question to answer is how large the input buffer must be in order to give a statistically

significant error rate estimation. To attempt to answer this question, Experiment 1 is

conducted again with the length of the input buffer made to vary. Once the buffer size is

such that factor of deviation is consistently less than 0.10, the estimation is considered

sufficiently close. For an explanation of this determination, refer to the results and

discussion for Experiment 1 in Chapter 4.

3.3.5. Expected results.

Success is measured by plotting pairs of actual error rates and their corresponding

estimated error rates and measuring the coefficient of determination of the resulting linear

38

regression. The regression is expected to have a slope of 1, and the coefficient of

determination will be sufficiently close to 1 if the estimate is accurate. A conclusion is

drawn about the necessary length of input size based on the deviation of the estimate

from the actual error rate being sufficiently close. Suggestions are made for an input size

for the remaining experiments, keeping in mind both accuracy of error rate estimation

and simulation time.

3.3.6. Assumptions and limitations.

 The inverse of Equation 3 is needed to find an equation for the estimation of p in

Equation 4, however the inverse of Equation 3 is not a function. Therefore, Equation 4

exhibits asymptotic behavior that will limit the ability of this method to estimate error

rates that are much greater than 20%. This argument can be visualized by referring to

Figure 6; a critical parameter of the error estimation function presented in Equation 4,

namely the parity error ratio, ceases to increase as the number of errors continues to

increase beyond approximately 20%.

The symmetry exhibited by Figure 7 is not a major issue. Although an error rate

of 90% will yield the same estimation using this function as an error rate of 10% Alice

and Bob attribute such high error rates to a calibration error, and so if Alice and Bob

recalibrate the error rate can always be assumed to be less than 50%.

39

Figure 7. Parity error ratio as a function of error rate

Finally, because this method is dependent upon parity measurements its accuracy

is highly dependent upon the normal distribution of errors. For example, an error rate of

0.10 may yield an estimate of 0% if the errors occur in pairs, or an estimate of 10% if the

errors are evenly spaced. So this experiment assumes that errors are randomly

distributed.

3.4. Experiment 2: Method for Dynamic Block Size Choice

3.4.1. Defining “ideal block size” theoretically.

 Recalling that Winnow is based on Hamming codes, which are perfect single error

correcting codes, the following observations can be made. If a block contains an odd

number of errors greater than 1 then the efficiency is adversely affected; not only will

log2N bits be discarded for the syndrome and 1 bit for the parity, but Hamming will likely

introduce an error that will require correction in a later pass. Furthermore, if there is an

even number of errors, one bit is discarded for parity and unless an error is discarded

accidentally, no errors are corrected. Hence the power of Winnow can be fully utilized if

a block contains exactly one error. Finally, if a block does not contain exactly one error,

then Winnow will perform better on average if the block contains no errors than if the

40

block contains two or more errors. Ideal block size is used here to refer to the block size

for which a block is most likely to contain exactly one error, given an estimation of the

relative rate of errors in the sifted key. Ideal error rate is used to refer to the error rate

for which a block of a given size contains exactly one error.

3.4.2. Selecting the ideal block size theoretically.

Following the reasoning by which Equation 1 is derived, the probability that an

N-bit block contains exactly one error when the initial error rate of Bob‟s key is p is

given by Equation 6.

 (6)

The goal is to maximize p1 through choices of block size for any given p, and by the

reasoning outlined above maximize the correction potential of Winnow. One example

showing the block size choice which maximizes Equation 6 for an initial error rate of

0.10 can be seen in the plot of Equation 6, shown in Figure 8:

Figure 8. Probability of one error per block as a function of block size

While Figure 8 provides visual evidence of the ideal block size given an error rate of

0.10, it is advantageous to be able to compute the ideal block size given any error rate.

41

This can be done by setting the first derivative of Equation 6 with respect to N equal to

zero and solving for N. The result is given by Equation 7:

 (7)

For the example with an error rate of 0.10, the ideal block size is N=9.49 bits. In

practice, due to the nature of Hamming codes, the block size must be a power of two, so

the estimate given by Equation 7 can be rounded down to the nearest power of two to

ensure one or less errors in a block.

 Another way to view this result is to solve Equation 7 for the error rate p in terms

of the block size. Equation 8 gives this result.

 (8)

The results are interpreted as, the ideal error rate for a block size of N bits is . Table 1

provides the ideal error rates for block sizes 8 through 1024.

Table 1. Ideal error rates for each block size up to 1024 bits

42

Each ideal error rate can be interpreted as the threshold above which a block of size N is

expected to contain more than one error on average, and below which a block of size N is

expected to contain less than one error on average. So a strategy for selecting the ideal

block size given an error rate p is to choose the block size N for which the inequality

given in Equation 9 holds.

 (9)

If p is greater than p8 then a block size of 8 bits should be used and if p is less than p1024

then a block size of 1024 bits should be used. The effective operation of Winnow

requires an upper bound on the error rate. For a weak bound, Buttler and his team note

that Hamming will introduce more errors than it will correct when p≈0.30. A stricter

bound on this rate is not in the scope of this experiment.

3.4.3. Approach and methodology.

 Determining the ideal block size schedule for a given initial error rate is done

either dynamically, or using a lookup table. In this experiment, the block size schedule is

first determined dynamically and then the resulting data comparing the error rate and

appropriate block size schedule is analyzed to generate a lookup table. The process for

dynamically determining the best next block size introduces a large number of floating

point operations into Winnow‟s code in practice, and thus while the throughput is

expected to increase, the completion time is expected to show a marginal increase over a

non-adaptive block size selection process.

In dynamically determining the best block size schedule, Alice and Bob begin

with a block size of 8 bits for the first pass. After comparing parity bits, Alice and Bob

can estimate the error rate between their sifted keys using Equation 4. Once they have

43

this information they can select the best next block size based on the error rate estimate,

the values in Table 1, and the selection scheme in Equation 8. At the beginning of each

pass Alice and Bob recalculated the error rate estimate and select the ideal block size for

the next pass, keeping a count of the number of passes using each block size. The

protocol terminates when Alice and Bob estimate an error rate of 0.

 The lookup table, then, is generated from the results of the dynamic selection

process. The reason for hard-coding block-size schedules is to remove most of the

floating point operations of the dynamic method in hopes of maintaining the speed with

which Winnow performs reconciliation, while also utilizing the findings of the dynamic

method to achieve lower information leakage and thus higher throughput. The data from

the dynamic method is sorted according to error rate, and divided into subsets

representing a range of error rates. For example, all error rates p such that 0 < p ≤ 0.01

will use the block schedule for p=0.01. The ideal block size schedule lookup table is

derived by applying the following rules to the data:

1. If the number of passes using a particular block size is frequently traded for the

next larger block size, there is no need to do a pass with both block sizes. Select

the maximum number of passes of the smaller block size and the minimum of the

larger block size. This will slightly impact throughput but ensure that Winnow

will correct all errors. An example derived from this research is given in Table 2

in Chapter 4.

2. For all other block sizes, use the maximum number of passes for which each

block size was used in the dynamic method.

44

These rules ensure not only that error rates in the applicable range are covered by the

ideal block size schedule, but also that the schedule works well for error rates at the low

end of the next higher range.

3.4.4. Simulation parameters and factors.

 For both the dynamic block size selection method and the lookup selection

method the length of the sifted key, the initial error rate, the block size, and the

distribution of errors are parameters that affect the ability of Winnow to locate and correct

errors. The length of the sifted key is fixed at 1,000,000 bits, and the errors are

distributed randomly throughout Bob‟s sifted key. The block size is determined by the

algorithm for the dynamic selection method, and is a fixed input parameter for the lookup

selection method. The factor for this experiment is the error rate, which varies randomly

between 0% and 20% for each of 1,000 trials.

3.4.5. Expected results.

 This dynamic selection method is expected to offer slightly higher throughputs

over the lookup selection method at a small cost of speed. Throughput is defined as the

percentage of sifted key remaining after performing reconciliation. The throughput is

expected to be higher for sifted keys with a low error rate than for sifted keys with a high

error rate, as more errors require more parity bits and syndromes to be exchanged, and

thus exposed and discarded. This method is expected to perform better in terms of

throughput than a non-adaptive method; the throughput is compared with such a method

as well as the theoretical bound on throughput. The theoretical limit is proposed in

(Kollmitzer & Pivk, 2010), where the minimum number of bits exposed by a

reconciliation protocol is given by the Shannon entropy of the error rate. Note that for

45

Winnow, „exposed bits‟ is synonymous with „discarded bits‟ and so throughput represents

the number of bits not exposed during Winnow. An example of a non-adaptive protocol

is to fix the block size for all error rates to be 8 bits for all passes, as suggested in (Zhao,

Fu, Wang, Lu, Liao, & Liu, 2007).

The number of passes for which each block size is used is not expected to be

correlated with the initial error rate in general. The number of passes with a block size of

8 bits will likely increase as error rate increases. However, since the passes with 8-bit

blocks will always drive the error rate below the ideal error rate for 8-bit blocks, a fixed

value, before increasing the block size it is expected that the number of passes for which

a block size of 16 or more bits is used will be very similar for all error rates.

3.4.6. Assumptions and limitations.

Note that error rates over 15% are considered unacceptable for BB84, as error

rates of this magnitude can be attributed to the presence of an eavesdropper (Nakassis,

Bienfang, & Williams, 2004). Therefore this method only seeks ideal block size

schedules for error rates less than 0.20. In using these methods for selecting ideal block

size schedules, Alice and Bob have the primary goal of ensuring all errors are detected

and corrected and the secondary goal of maximizing the throughput of Winnow.

A limitation of this block size selection method is that its success is based on

statistical assumptions of the distribution of errors within Bob‟s sifted key, both for the

estimation of the initial error rate as well as intermediate error rates, in the dynamic

selection method. The methodology proposed for the dynamic selection method is

relatively unaffected by the type of distribution of errors in the sifted keys, since the error

rate is estimated continually during every pass and bits are randomly permuted between

46

each pass, but the lookup selection method is affected if the distribution of errors is non-

random prior to the parity-based error estimation method described in Experiment 1. See

Experiment 3 for a discussion of the effect of error distribution.

3.4.7. Advanced selection method.

This approach has one more limitation. The selection of the next block size is

based upon Alice and Bob‟s estimation of the rate of errors in Bob‟s sifted key. This

estimation occurs after parity bits are exchanged, but prior to exchanging syndromes.

Therefore, once the error estimation is acquired it is too late to change the block size, and

yet the actual rate of errors in Alice and Bob‟s strings will be altered before the selected

block size is used. Therefore, while the block size chosen from the error rate estimation

will be small enough and have a high enough correction power to eliminate errors, it may

be smaller and hence less efficient than necessary. To test this hypothesis, a second

round of experiments referred to as Experiment 2 Variant is performed using an identical

methodology to that presented for Experiment 2, but for this variant an attempt will be

made to estimate the number of errors that will be corrected by the pass in progress, and

hence attempt to determine what the best block size will be after the pass is complete. To

accomplish this more informed estimation, the following factors are considered when

estimating error rate:

1. The error rate is first estimated per the method described in Experiment 1.

This estimate represents the error rate prior to performing the current pass of

Winnow.

2. The probability that a block contains one error is computed, and the

probability that a block contains an odd number of errors other than 1 is

47

computed. The normalized values represent percentages of blocks exhibiting

parity errors for each category. Consider these equations:

(10)

The fraction

 gives the probability that an error is corrected

in a block with a parity error, and 1-pc gives the probability that an error is

introduced under those conditions.

3. The probability that a block contains a nonzero even number of errors is

computed. The fraction of blocks with an even parity will have an error

unintentionally discarded for privacy maintenance after parity comparison

with probability n/N, for a block size of N and an even number of errors n.

For simplicity, this is only done in passes with a block size of 8 bits. It is also assumed

that the probability of discarding an error from a block with an even number of errors in

Factor 3 is 2/N, as there is only a 0.008 chance than an 8-bit block contains an even

number of bits greater than 2. The results of Experiment 2 Variant are compared with the

results of Experiment 2. Experiment 2 Variant is expected increase the throughput

marginally over Experiment 2.

3.5. Experiment 3: Effects of Error Distribution on Winnow Operation

3.5.1. Potential types of error distributions.

 This experiment quantifies the effect of the distribution of errors in the sifted key

with regards to the effectiveness of Winnow, and the effectiveness of randomly permuting

48

the sifted key prior to running Winnow in mitigating any negative effects of non-random

errors. Error distributions of particular interest are random distributions of errors, a

single burst error among an otherwise random distribution of errors, and periodic burst

errors.

 Randomly distributed errors are introduced according to the philosophy that each

bit has a probability equal to the input error rate of being in error. Therefore, randomly

distributed errors may occur at regular intervals but may also exhibit small burst patterns.

 Single burst errors are relatively large clusters of errors introduced into the sifted

key. These bursts do not represent the total error rate, and the rest of the errors are

introduced into the key in a random distribution around the burst. Periodic burst errors

are errors that occur in the sifted key in clusters at regular intervals. Figure 9 shows

examples of each of these types of error distribution.

Figure 9. Types of error distribution

3.5.2. Simulation parameters and factors.

 Parameters of Experiment 3 include length of the sifted key, type of error

distribution, length of the error burst (if applicable), the selection of block size schedule,

and input error rate. The length of the sifted key is fixed at 1,000,000 bits. For burst

49

error patterns the size of the burst is selected as a percentage that varies between 1% and

10%, of the total number of errors. Percentages of total errors are used rather than a fixed

value so that the number of errors in a burst is relative to the total number of errors. For

example, a 100-error burst intuitively has much less impact if the error rate is 15% than if

the error rate is 1%, and this issue is overcome by using a burst size relative to the total

number of errors. The initial error rate varies between 0% and 20%. The selection of the

block size schedule is lookup-based and uses the lookup table from Experiment 2.

3.5.3. Approach and methodology.

 Each burst size is simulated over 5,000 Monte Carlo trials, with and without

initial random permutation of the input buffer. The output of the simulation consists of

throughput and maximum errors left after performing Winnow. The introduction of

randomly distributed errors involves flipping each bit in Bob‟s key with probability equal

to the error rate. The introduction of single burst errors involves selecting a random

starting position for the burst, introducing errors up to the burst length for that trial at that

position, and then introducing the remaining errors evenly outside of the burst. The

introduction of periodic burst errors involves dividing the total number of errors into

bursts of the specified length and introducing these bursts at regular intervals into Bob‟s

sifted key. The burst length is defined by a fraction of the total error rate of the sifted

key; for example, if the error rate is 10% and the burst size specification rate is 0.05, then

some 0.5% of the sifted key contains consecutive errors. For a visual example, in

Figure 9 the burst size specification rate is approximately 0.3 and indeed approximately

one third of the total number of errors occurs in each burst. This definition is chosen to

50

ensure that the actual burst size scales with error rate, where fixing a small burst size to

work in both high and low error rates would likely not provide meaningful output.

3.5.4. Assumptions and limitations.

 This experiment assumes that burst errors occur in perfect blocks. The periodic

burst error experiment assumes that those perfect blocks occur in perfect intervals.

Furthermore, the reader should note that this definition of randomness naturally generates

burst errors anyway. For a series of N Bernoulli trials with two outcomes of equal

probability, there is expectedly one string of log2N consecutive trials for which the

outcome is the same. For example, out of 30 coin flips one can expect a string of 4-5

consecutive heads or tails. And in introducing errors randomly into an input of one

million bits, which is a Bernoulli trial with a parameter p, one can similarly expect

multiple consecutive errors. Therefore randomly distributed errors here are not expected

to be uniformly distributed, and in general this error distribution may actually be

interpreted as representing sparsely distributed and small single burst errors. This is not

expected to affect the outcome of this experiment, and in general represents a better

characterization of real-world QKD systems than would uniform errors.

3.5.5. Expected results.

 For a random error distribution, Winnow is expected to operate normally, as it was

designed to work under such conditions. For burst errors, Winnow is expected to fail to

correct blocks containing burst errors on the first pass and is expected to perform sub-

ideally. Blocks containing a large number of errors affect the operation of the Winnow

protocol, such as Hamming introducing errors into blocks with odd number of errors

greater than 1. Furthermore, burst errors are expected to affect the error estimation

51

phase, especially for periodic burst error patterns, which will affect the choice of block

size and thus the correction ability of Winnow. This result will be reflected in the

throughput and number of remaining errors. The failures induced by burst error

distributions are expected to be rectified by applying a random permutation to the sifted

key prior to performing reconciliation.

52

IV. Results and Discussion

The results of the Experiments described in Chapter III are provided below. Once

the results are presented and conclusions drawn, some additional findings on the

performance of this implementation of Winnow are presented.

4.1. Experiment 1: Error Rate Estimation

 The plot shown in Figure 10 summarizes the data collected from the error

estimation experiment for an input buffer length of 1,000,000 bits and error rates between

0% and 20%. The x-axis is the rate at which errors were introduced into Bob‟s sifted

key, or actual error rate, and the y-axis is the estimated error rate. The data points

represent 1,000 trials.

Figure 10. Estimated error rate compared to actual error rate

There is clearly a linear relationship. A linear regression fits the data visible well,

and the coefficient of determination (R
2
 value) indicates the line is a good fit for the

range of values shown in Figure 10. However, this method of error estimation is not very

53

effective for actual error rates larger than 0.20. Figure 11 shows a plot of error estimation

and the corresponding actual error rate for error rates ranging between 0% and 100%.

Figure 11. Estimated error rate compared to actual error rate

 Not only is the correlation between actual and estimated error rates very weak for

error rates between 25% and 75%, but in some cases the error rate cannot be estimated at

all, which is represented by points lying along the x-axis. Furthermore, the estimated

error rate is falsely reported for actual error rates greater than 75%. Error rates this high

can be interpreted as calibration issues between Alice and Bob, and so in flipping every

bit sent over the channel the rate can be kept below 50% errors and this issue of false

reporting can be rectified. The problem of lack of correlation for error rates between

25% and 50% cannot be avoided. Therefore, Alice and Bob should start over if their error

rates are estimated to be greater than 20%, or should use another method of estimation.

 The size of the input also has a bearing on the resolution of the error rate estimate:

too small an input buffer results in the estimation lacking statistical significance.

However, for the purpose of simulating Winnow over large numbers of trials, the input

must also be as small as possible. Figures 12 and 13 show the relationship between the

54

size of the input buffer and the closeness of the estimated error rate to the actual error

rate.

Figure 12. Deviation of error estimation as a function of input buffer length

With an input buffer length of 1,000,000 bits the deviation factor reaches a threshold

of 0.10. This factor translates roughly to an increase of 1% in the difference between

actual error rate and estimated error rate for every increase of 10% in actual error rate.

Larger buffers provide better estimate resolution, but with diminishing returns and

generally increasing runtimes.

55

Figure 13. Deviation of error estimation as a function of input buffer length

 In subsequent experiments, further data suggests this factor should be close to

0.05. For example, the results presented in Figure 17 indicate that Winnow tends to fail

if the error rate estimation deviates by more than 1%. This is to be expected, as the block

size choices determined in Experiment 2 are effective for a ±1% range in general. For an

error rate of 10% the deviation factor would need to be 0.10 to keep the estimation

difference below 1%. However, for an error rate of 20% the factor should be less than

0.05. Hence, using these findings, it is suggested that for statistical significance in the

error rate estimation conducted prior to performing Winnow, the input buffer should

contain 2,000,000 bits. Noting the sparseness of trials for which this factor exceeds 0.05

with an input buffer of 1,000,000 bits, as depicted in Figure 13, this length is considered

sufficiently large for the remaining experiments in this research in order to keep

simulation times low.

 The data presented in this section answers the following questions:

56

How closely can Alice and Bob estimate the initial error rate without directly

comparing a portion of the secret keys? How can Alice and Bob affect this

resolution?

This is a function of the length of the sifted key that serves as input into the

Winnow algorithm. The error estimation method is based on the assumption that errors

are normally distributed, and the function used to estimate the error rate requires a large

enough sample size to provide a statistically significant estimation. Depending on the

input buffer size, one can approximate a “worst-case scenario” using Figure 12 and

Figure 13. Alice and Bob can affect the resolution of the error estimation by buffering a

larger or smaller amount of sifted key prior to performing Reconciliation with Winnow.

How close must their error estimations be for Winnow to succeed?

Using an initial block size of 8-bits, the data from this experiment suggests that

one should have 1,000,000 bits of sifted key prior to error estimation in order to achieve

an estimate that differs by a factor of 0.10 or less. Later experiments suggest that it

would be desirable to have the estimate differ by no more than a factor of 0.05, and so it

would be best for Alice and Bob to buffer 2,000,000 bits of sifted key prior to estimating

error rate by the proposed method.

4.2. Experiment 2: Method for Dynamic Block Size Choice

 The experiment provided 1,000 lines of tab-delimited data, including the input

error rate, throughput, and chosen block size schedule. Results were sorted according to

input error rate, and divided into 20 subsets each representing 1%error rate ranges

between 0% and 20%. Each subset is assigned a block size schedule that works most

57

effectively for the error rates in that section. The patterns found in the data were

remarkable.

 As expected, an increase in error rate generally required an increase in correction

power, thus an increased probability of choosing smaller block sizes. It was a pattern

similar to the little-endian binary representation of decimal numbers, for which larger

binary digits are required to represent larger decimal numbers. Consider the pattern

shown in Table 2, which is a subset taken from the actual data. The full raw data and

analyses can be found on the accompanying CD.

 Some conclusions can be drawn from the data in Table 2, which was selected due

to its representation of a transition in the need for a higher correcting power. This

transition is evident in the variation between a block size of 64 bits and a block size of

128 bits for the middle range of rates shown, and also in the need for a second pass with a

block size of 1024 bits when the algorithm chose a block size of 128 bits and perhaps

should have chosen the stronger block size of 64 bits. The ideal schedule for error rates

0% to 1%, within which this data lies, was selected to be {1,0,0,1,0,0,1,2}, where each

number represents the number of passes performed using block sizes of, respectively,

{8,16,32,64,128,256,512,1024} bits. This selection is the product of the analysis

conducted on the raw data in provided on the accompanying CD with respect to the rules

outlined for Experiment 2 in Chapter 3. Note that this block size schedule will cover all

the examples shown in Table 2, and covers all examples found for this range in the raw

data.

58

Table 2. Experimental block size schedules as a function of error rate

 The number of passes performed with a block size of 8 bits is generally

proportional to the error rate, as can be seen in Figure 14.

Figure 14. Number of passes with 8 bit blocks relative to error rate

However, the number of passes performed with a block size other than 8 bits is not

generally proportional to the error rate. This result can be seen in Figure 15.

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
u

m
b

e
r

o
f

p
as

se
s

Input error rate

59

Figure 15. Number of passes with 16 bit blocks relative to error rate

It is interesting to note the correlation between the data presented in Figures 14 and 15.

Particularly, transitions in the number of passes using a block size of 16 bits from one

pass to no passes occurs when the number of passes using a block size of 8 bits increases.

This speaks to the correction power of an additional pass with a block size of 8 bits

reducing the need for a pass with a block size of 16 bits.

 Using the experimental results from the dynamic selection method, the ideal block

size schedules were derived and are summarized in Table 3. The error rate ranges in the

first column of Table 3 specifies the range of error rates for which the corresponding

block size schedule should be used. Of interest is the increasing tendency of the number

of passes using 8-bit blocks. Also, most block sizes were used for only one pass or less

before switching to a larger block size.

 Finally, the throughputs of the two phases are shown among other data in Figure

16. The values are compared with the throughput of a non-adaptive block size selection

0

1

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
u

m
b

e
r

o
f

p
as

se
s

Input error rate

60

Table 3. Ideal block size schedules for error rates 0 - 20%

method as well as the upper bound on throughput for any reconciliation protocol.

Throughput is defined to be the amount of remaining data after performing reconciliation,

and thus the bound on throughput is derived from the fraction of bits discarded divided

by the total number of input bits. The bound was determined in (Kollmitzer & Pivk,

2010). Interestingly, the large jumps in Figure 16 are correlated with the increase in

number of passes with a block size of 8-bits; compare the position of the jumps with

Figure 14. It is readily seen that the adaptive method for selecting block size schedules

performs better in terms of throughput than the non-adaptive selection method.

Furthermore, the dynamic selection method and the lookup selection method perform

61

very similarly. Finally, as the error rate approaches 20% the throughput of the adaptive

method approaches the throughput of the non-adaptive method. This result can be

explained by referencing Table 3, which demonstrates that the number of passes using an

8-bit block size generally tends to overshadow the number of passes using other block

sizes as the error rate increases.

Figure 16. Throughput for Winnow

4.2.1. Experiment 2 Variant.

 Using the same methodology described in the primary setup for Experiment 2, a

different error rate estimation technique was employed to attempt to anticipate changes in

the data. This method still relies on assumptions of a random error distribution, though it

accounts for errors likely to be eliminated by privacy maintenance and Hamming

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Th
ro

u
gh

p
u

t
(b

it
s)

Error rate

Dynamic selection

Dynamic selection variant

Non-adaptive

Ideal bound

62

syndromes, as well as the potential for errors to be introduced when the number of errors

per block is odd and three or larger. Between Experiment 2 and Experiment 2 Variant,

the dynamic block size selection method of Experiment 2 Variant performed best in

terms of throughput. The throughputs of both dynamic selection methods are plotted

together in Figure 16. The other plots are described in the previous section.

The block size schedules determined in Experiment 2 Variant, shown in Table 4,

vary slightly from the ones shown in Table 3. Of particular note is the reduced usage of

8-bit blocks, which increases the throughput of the algorithm at higher error rates.

Furthermore, the method employed in Experiment 2 Variant led to a smoothing of the

throughput curve. This can be attributed to the more effective use of larger block sizes

by the algorithm employed in Experiment 2 Variant. For example, at the 9-10% error

rate range, the Experiment 2 algorithm chose 8-bit blocks three times, whereas the

Variant selected 8-bit blocks twice and rather than a third pass with 8-bit blocks added a

pass with 64-bit blocks, thus wasting less bits for uneeded parity calculations. This

impacted the throughput of the algorithm by approximately 2%, which is visible in the

throughput plot shown in Figure 16.

 The data presented in this section answers the following questions:

How can Alice and Bob choose an efficient block-size schedule given an estimated

initial error rate? What are efficient block size choices?

One way, the proposed method, is to choose the block size such that the

probability that any block contains exactly one error is maximal. Because Winnow is

based on Hamming codes, which are single error correcting codes, it follows that Winnow

performs best when a block contains one error. Furthermore, if a block does not contain

63

Table 4. Variant-generated ideal block size schedules for Winnow

exactly one error, it would be best if blocks contain 3 or more errors with only a very

small likelihood, as errors will be introduced due to blocks containing an odd number of

errors greater than 1. Maximizing the number of blocks containing exactly one error is

accomplished by finding the block size that maximizes the binomial probability that a

block contains exactly one error, given the most current estimated error rate. Finally, the

error rate estimate can be made more realistic by estimating the number of errors

corrected before the next pass, which necessarily affects the size of the block that should

be used next.

64

Block size schedules generated by the proposed method are detailed in Table 3,

and block size schedules generated by the second method, which includes estimating the

number of errors corrected by a given pass, are given in Table 4.

4.3. Experiment 3: Effects of Error Distribution on Winnow

4.3.1. No permutation applied prior to the first pass.

 For the first portion of Experiment 3, the sifted keys were not permuted prior to

the first pass of Winnow. As expected, the algorithm still performed well for randomly

distributed errors, and corrected all errors with the typical throughput and in the typical

amount of time. However, introducing burst errors into Bob‟s sifted key led to utter

failure of the protocol. This was mainly caused by the failure of the error estimation

method, as can be seen by correlating the difference between the estimated and actual

error rates with the number of errors left after Winnow. Refer to Figure 17 for a

visualization of this result for single burst errors.

The error rate was typically underestimated; this is to be expected, because burst

errors will tend to mask each other and thus not be considered in the parity-based error

estimation. Furthermore, as the error rate estimation deviated much further than 1% from

the actual error rates the number of errors not corrected by Winnow increased. The data

in Figure 15 represents the data produced by single burst errors with no permutation

applied prior to performing Winnow. The outcome for periodic burst errors was far

worse, and could not be presented graphically in a useful manner. In general the error

rate estimation was approximately 0%, as all errors masked each other for estimation, and

thus too weak a block schedule was chosen a majority of the time; almost all errors

remained uncorrected for non-permuted periodic burst errors.

65

Figure 17. Remaining errors as a function of error rate estimation difference

4.3.2. Applying a permutation prior to the first pass.

 Applying a random permutation before the first pass rectified these shortcomings;

in all but one trial out of 5,000 total trials for single burst errors, and all but two trials out

of 5,000 total trials for periodic burst errors, Winnow was able to correct all errors. The

permutation did not affect the performance of Winnow for randomly distributed errors.

Figure 18 shows the throughput for Winnow for inputs with randomly distributed errors,

inputs with single burst errors, and inputs with periodic burst errors and with a random

permutation applied prior to the first pass. The burst size for the burst error patterns in

Figure 18 is the largest used for experimentation, namely 10% of all errors.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 9E-17 0.005 0.01

R
e

m
ai

n
in

g
e

rr
o

rs
 (

b
it

s)

estimated error rate - actual error rate

Burst size ratio 0.01

Burst size ratio 0.05

Burst size ratio 0.10

66

Figure 18. Throughput for Winnow with different error distributions

To summarize, Winnow performs extremely poorly for burst error distributions

unless a random permutation is applied prior to the first pass. Permuting the sifted keys

randomly prior to reconciliation fixes the failure of Winnow in nearly all trials, and does

not adversely affect the performance of Winnow for randomly distributed errors.

 The data presented in this section answers the following questions:

What effect do burst errors have on the operation of the Winnow protocol?

Single burst errors and periodic burst errors do affect the operation of the Winnow

protocol when no permutation is applied to the bits prior to the first pass. In most cases,

these types of error distributions affect the error rate estimation, causing too low an

estimate by reducing the number of blocks exhibiting parity errors in Equation 4. If the

error rate is estimated too low, then an inappropriately low-powered block-size schedule

will be selected and Winnow will fail to correct all errors. For periodic burst error

distributions, Winnow almost always estimated an error rate of 0%. For burst error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Th
ro

u
gh

p
u

t

Error rate

Uniform

Single burst

Periodic burst

67

distributions, the estimation deviated by an amount that was generally related to the size

of the burst. The number of errors not corrected at the end of Winnow as a function of

error rate deviation can be seen in Figure 17 for single burst errors with three different

burst sizes.

Are these types of error distributions mitigated by shuffling the sifted key prior to

the first pass of Winnow?

 It appears that they are, and that errors that are normally distributed prior to such a

permutation strategy are not rearranged into a burst or otherwise harmful distribution.

This result is to be expected, as Winnow performs best when errors are randomly

distributed.

68

V. Conclusions

Current methods for secure communication include symmetric protocols and

asymmetric protocols. Asymmetric protocols, or public key protocols, are typically used

to distribute key material for use in symmetric key protocols. The asymmetric protocols

of today generally rely on the computational unfeasibility of performing difficult

mathematical operations, so-called trapdoor functions. Many of these mathematically

hard problems, to include factoring semiprimes and computing discrete logarithms, have

been solved for quantum computers and as the prospect of quantum computing becomes

increasingly promising, the need for a more secure means by which to distribute key

material becomes increasingly apparent. While “post-quantum” cryptographic protocols

address this issue using classical components, several quantum key distribution (QKD)

protocols also exist with a security foundation based on generally accepted laws of

quantum physics.

These QKD protocols are still quite nascent, and as such the ideal assumptions of

ideal components have yet to be realized. One consequence of this shortcoming is the

addition of an error correction phase inserted into a QKD protocol in order to ensure that

the communicating parties share a common final key. One such protocol which enjoys a

relatively small communication complexity is called Winnow, and this research addresses

the issue of finding ideal block sizes for use in the Winnow reconciliation protocol.

In one competing protocol, Cascade, it is suggested that the communicating

parties publicly compare a subset of their bits in order to estimate the error rate of the

69

sifted keys prior to error reconciliation. Buttler et al. argue that this isn‟t necessary and

propose an alternative means of error estimation, under the assumption that errors are

normally distributed. This error rate estimation technique performs extremely well, and

the communicating parties can increase the accuracy of the method by increasing the

number of bits in the sifted key prior to error estimation. In fact, if the communicating

parties accrue two million bits of sifted key before estimating the error rate, then the

estimation will on average be within a factor of 0.5% of the actual error rate, which is

sufficiently close to reduce the probability of failure of Winnow to a negligible amount.

Furthermore, by randomly permuting the bits prior to the first pass of Winnow, the

communicating parties can ensure the maximal effectiveness of the error estimation

technique, and of the Winnow protocol.

 While the normal distribution of errors is central to the effective operation of

Winnow, the selection of block sizes used by the protocol is also quite important. For

blocks containing an even number of errors, a parity bit is unnecessarily sent and thus

discarded. For blocks containing an odd number of errors greater than 1, Winnow can

actually introduce errors. Therefore an ideal block contains exactly one error. This fact

can be exploited to select ideal block sizes, once an error rate is known. That is, once the

communicating parties have a decent estimation of the number of errors in their sifted

keys, they can use Equation 7 to determine the best block size for a given error rate, or

similarly Equation 8 to determine the best error rate for each block size that is suitable for

use in Winnow. Figure 19 demonstrates the concept of too large or too small a block size.

This research provides a methodology for an adaptive block size selection scheme, and

the results are summarized in Table 3 and Table 4.

70

Figure 19. Visual representation of ideal block size

 Winnow performs well with normally distributed errors, but due to the fact that

burst errors can be introduced into the channel by environmental interference and other

sources of both periodic and asymmetric noise, a study of the effect of burst errors on the

operation of Winnow is treated in this research. Of particular interest are single burst

errors, in which a controlled percentage of errors occur in a large burst and the rest of the

errors occur randomly around the burst, and periodic burst errors, in which all errors

occur in burst distributed in regular intervals in Bob‟s sifted key. Winnow has the ability

to recover from single burst errors in this scenario unless the error rate estimation

deviates by more than a factor of one percent from the actual error rate. This can be seen

visually in Figure 20. Periodic burst error patterns lead to the complete failure of

Winnow. Applying a random permutation to the sifted keys prior to performing Winnow

fixes this shortcoming, and in the experiments performed for this work applying a

random permutation prior to the first pas of Winnow led to throughputs for periodic and

single burst error patterns which were similar to the throughput for normally distributed

errors.

71

Figure 20. Failure of Winnow with single burst errors, no initial permutation

5.1. Recommendations for Future Research

The experiments designed in this research admit limitations, and each of these

limitations can be used to identify areas for future research to further improve Winnow

and characterize its strengths and weaknesses. The following list identifies areas for

improving this work with regards to studying Winnow.

1. Improving the variant used in Experiment 2

Experiment 2 admits that there is a shortcoming in using error rate estimates

for selecting the best next block size, and addresses this issue by employing a

naïve mechanism for estimating the number of errors expected to be corrected

and introduced in the current pass. This estimation mechanism is currently

only used for a block size of 8-bits for simplicity, and is a stub in the author‟s

current implementation of Winnow for other block sizes. This estimation

72

mechanism can be generalized to include other block sizes, which would

likely improve the overall throughput of the Winnow protocol.

2. A study of a wider selection of block sizes

In the seminal research on Winnow, Buttler et al. use block sizes of 8 bits

through 256 bits. This research uses block sizes of 8 bits through 1024 bits,

the idea being that a larger block would be more suitable because less parity

bits would be exchanged for very low error rates. It would be interesting to

determine the point at which the block size becomes too large, that is, the

number of bits sent in syndromes is larger than the number of unnecessary

parity bits sent. This information can be used to bound the maximum block

size. Indeed, a bound is needed on the maximum block size, because if the

block size exceeds the number of bits in the sifted key Winnow will not

function properly.

3. Verification of definition of “ideal block size”

This author‟s definition of ideal block size assumes that the ideal block

contains exactly one error. However, the ideal block may in fact contain less

or more than zero errors on average. For example, the authors of Cascade

experimentally determined that the ideal block contains approximately 0.69

errors on average, while intuitively one might reason that exactly one error per

block might be ideal. An experimental characterization of the definition of

ideal block size for Winnow would be of interest.

73

4. C++ implementation improvements

Winnow is highly conducive to multithreading, as most of its operations can

be done in parallel. The author‟s implementation does not exploit this

property, and a parallelizable implementation would likely improve the speed

of Winnow dramatically. Also, the author‟s implementation of matrix

multiplication for producing syndromes is not as fast as it could be. A speed

increase could be seen by computing the parity of each row of the parity-

check matrix logical AND’ed with each block of sifted key.

5. Comparison with other error reconciliation protocols

Winnow is one protocol of many designed to address the issue of error

reconciliation in QKD. A detailed comparison of Winnow with these

protocols, for example Turbo Codes and Low Density Parity Check Codes,

would be valuable in determining the benefits and weaknesses of each.

74

Appendix A: Sample BB84 Key Distribution

75

Appendix B: Additional Analyses

Time Complexity

The time it takes for Winnow to completely eliminate all errors appears to scale

linearly with sifted key length. The error rate is, of course, also a factor as the error rate

determines the number of passes Winnow requires to correct all errors. To test the

complexity, Winnow was performed on a sifted key with error rates of 1%-20% and

sifted key length of 100,000 bits through 10,000,000 bits. For each percentage and length

combination, an average run time was calculated in seconds from 10 trials. The graph

below shows the averages of times for all twenty error rates and each sifted key length.

The data showing each individual error rate for each sifted key length can be found on the

accompanying CD along with the data used to generate the graph below.

R² = 0.9968

0

2

4

6

8

10

12

0.00 2.00 4.00 6.00 8.00 10.00

Ti
m

e
 (

s)

Sifted key length (millions of bits)

Millions

Time Complexity of Winnow

76

Communication Complexity

 Communication complexity of a reconciliation protocol for use in a quantum key

system can be defined in two ways:

 The number of messages passed between Alice and Bob

 The number of bits sent between Alice and Bob

Using the first definition, the number of messages passed between Alice and Bob

increases linearly with error rate, if Winnow is performed using the block sizes

determined in Experiment 2 in this research (see Table 3). This is due to the fact that

higher error rates demand a higher number of passes, and each pass requires exactly two

messages to be sent between Alice and Bob. A comparison is shown below between the

error rate and number of messages sent between Alice and Bob.

 Using the second definition, the number of bits sent between Alice and Bob, we

can draw a comparison between this curve and the theoretical minimum determined in

0

5

10

15

20

25

0% 5% 10% 15% 20%

N
u

m
b

e
r

o
f

m
e

ss
ag

e
s

se
n

t

Error rate (%)

Communication Complexity of Winnow

77

(Kollmitzer & Pivk, 2010). The number of bits sent follows a nice curve, as shown

below. Note that the number of bits sent with respect to the size of the input is not

interesting, as these numbers will most certainly be proportional. It is the effect of the

error rate that is most interesting.

The data for both communication complexity graphs was taken from the data

collected for Experiment 2. Note that the number of bits sent over the wire is the number

of bits exposed to an eavesdropper.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0% 5% 10% 15% 20%

B
it

s
se

n
t

o
ve

r
p

u
b

lic
 c

h
an

n
e

l

Error rate (%)

Communication Complexity of Winnow

Theoretical minimum

Bits sent over wire

78

Appendix C: Bit Buffer Class Code

/*
 * BitBuffer.h
 *
 * Created on: Mar 28, 2011
 * Author: Kevin Lustic
 *
 * This code can be found on the accompanying disc as well.
 */

#ifndef BITBUFFER_H_
#define BITBUFFER_H_

//#define using_bitmask

class BitBuffer {
public:
 BitBuffer();
 BitBuffer(unsigned int); // constructor
 virtual ~BitBuffer();

 unsigned int getBit(unsigned int);
 unsigned int getParity(unsigned int, unsigned int);
 unsigned int getLength();
 unsigned int getSeed();

 void setBit(unsigned int);
 void clearBit(unsigned int);
 void flipBit(unsigned int);
 void setLength(unsigned int);
 void setSeed(unsigned int);

 void printBuffer();
 void removeBit(unsigned int);
 void permuteBuffer();
 void newPermutation();

private:
 unsigned int *_buffer;
 unsigned int *_length;
 unsigned int *_seedVal;

 void ClearBuffer(void);

 #ifdef using_bitmask
 unsigned int *_bitMask;
 void InitializeBitMask(void);
 #endif
};

#endif

79

/*
 * BitBuffer.cpp
 *
 * Created on: Mar 28, 2011
 * Author: Kevin Lustic
 *
 * This code can be found on the accompanying disc as well.
 */

#define using_shifts // Use shifts for bit manipulation
//#define using_bitmask // Use bitmasks for bit manipulation
#define enable_debug_mode // Enable comments such as bounds checking

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "BitBuffer.h"

#define BITS_PER_WORD 32 // Set bits per word according to architecture (32-
or 64-bit)
#define BYTES_PER_WORD (unsigned int)(BITS_PER_WORD/8)
#define MAX_BUFFER_ELEMENTS 4096
#define MAX_BITS (MAX_BUFFER_ELEMENTS*BITS_PER_WORD)

BitBuffer::BitBuffer() {
 printf("You've used the default constructor. You should use the other
constructor.\n");
}

BitBuffer:: BitBuffer(unsigned int size) {
 _length = new unsigned int(size);

 srand(time(NULL));
 _seedVal = new unsigned int(0); //random seed for permutation

 _buffer = new unsigned int[*_length/BITS_PER_WORD+1];
 ClearBuffer();

 #ifdef using_bitmask
 _bitMask = new unsigned int [64];
 InitializeBitMask();
 #endif
}

BitBuffer::~BitBuffer() {
 delete _length;
 delete _buffer;
 delete _seedVal;

 #ifdef using_bitmask
 delete _bitMask;
 #endif

80

}

unsigned int BitBuffer::getLength() {
 return *_length;
}

void BitBuffer::setLength(unsigned int size) {
 _length = new unsigned int (size);
}

unsigned int BitBuffer::getSeed() {
 return *_seedVal;
}

void BitBuffer::setSeed(unsigned int seed) {
 _seedVal = new unsigned int (seed);
}

//////////////////////////// Start methodology-dependent functions
////////////////////////////////

#ifdef using_shifts

unsigned int BitBuffer::getBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In getBit: index out of bounds. Returning 0.\n");
 return 0;
 }
 #endif

 return (_buffer[index/BITS_PER_WORD]>>(index%BITS_PER_WORD))&0x1;
}

void BitBuffer::setBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In setBit: index out of bounds. Returning 0.\n");
 return;
 }
 #endif

 _buffer[index/BITS_PER_WORD] |= 1<<(index%BITS_PER_WORD);

 return;
}

void BitBuffer::clearBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In clearBit: index out of bounds. Returning 0.\n");
 return;

81

 }
 #endif

 _buffer[index/BITS_PER_WORD] &= ~(1 << (index%BITS_PER_WORD));
 return;
}

void BitBuffer::flipBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In clearBit: index out of bounds. Returning 0.\n");
 return;
 }
 #endif

 _buffer[index/BITS_PER_WORD] ^= 1<<(index%BITS_PER_WORD);

 return;
}

#endif // for using bit shifts for manipulation

#ifdef using_bitmask

unsigned int BitBuffer::getBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In getBit: index out of bounds. Returning 0.\n");
 return 0;
 }
 #endif

 unsigned int Element = index / BITS_PER_WORD;
 unsigned int Bit = index % BITS_PER_WORD;

 if(_buffer[Element]&_bitMask[Bit])
 return 1;

 else
 return 0;
}

void BitBuffer::setBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In setBit: index out of bounds. Returning 0.\n");
 return;
 }
 #endif

 unsigned int Element = index / BITS_PER_WORD;
 unsigned int Bit = index % BITS_PER_WORD;

82

 _buffer[Element] |= _bitMask[Bit];

 return;
}

void BitBuffer::clearBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In clearBit: index out of bounds. Returning 0.\n");
 return;
 }
 #endif

 unsigned int Element = index / BITS_PER_WORD;
 unsigned int Bit = index % BITS_PER_WORD;

 _buffer[Element] &= (~_bitMask[Bit]);

 return;
}

void BitBuffer::flipBit(unsigned int index) {
 #ifdef enable_debug_mode
 if(index >= *_length) {
 printf("In flipBit: index out of bounds. Returning 0.\n");
 return;
 }
 #endif

 unsigned int Element = index / BITS_PER_WORD;
 unsigned int Bit = index % BITS_PER_WORD;

 if(_buffer[Element] & _bitMask[Bit])
 _buffer[Element] &= (~_bitMask[Bit]);

 else
 _buffer[Element] |= _bitMask[Bit];

 return;
}

#endif

//////////////////////////////// End methodology-dependent functions
////////////////////////////////

/*
 * getParity(start,end)
 */
unsigned int BitBuffer::getParity(unsigned int start, unsigned int finish) {
 #ifdef enable_debug_mode
 if(start >= *_length || finish >= *_length || finish<start) {
 printf("In getParity: improper bounds. Returning 0.\n");

83

 printf("start/end is %d/%d\n",start,finish);

 return 0;
 }
 #endif

 unsigned int parity=0;
 unsigned int startInt=0, endInt=0;
 unsigned int startIndex = start/BITS_PER_WORD;
 unsigned int endIndex = finish/BITS_PER_WORD;

 // set all bits
 unsigned int startMask=~0;
 unsigned int endMask=~0;

 endMask >>= ((endIndex+1)*BITS_PER_WORD-finish-1);
 endInt = _buffer[endIndex] & endMask;

 startMask <<= (start-(startIndex)*BITS_PER_WORD);
 startInt = _buffer[startIndex] & startMask;

 if(startIndex == endIndex) {
 startMask &= endMask;
 parity ^= _buffer[startIndex] & startMask;
 }

 else {
 parity ^= startInt;
 for(unsigned int i=startIndex+1; i<endIndex; i++)
 parity ^= _buffer[i];
 parity ^= endInt;
 }

 for(unsigned int i=BITS_PER_WORD/2; i>=1; i/=2) {
 parity = parity ^ (parity >> i);
 }

 return parity & 0x1;
}

// Bits located at index i in _permutation will be switched to index
_permutation[i]
void BitBuffer::permuteBuffer() {
 srand(*_seedVal);
 unsigned int oldIndex = 0;
 unsigned int newIndex = 0;
 unsigned int tempNew,tempOld;
 unsigned int mask1=0, mask2=0;
 unsigned int length = *_length;

 // construct permuted bit buffer
 for(unsigned int counter=0; counter < length; counter++) {

84

 oldIndex = counter;
 newIndex = (unsigned int)((double)rand()/RAND_MAX * length);

 mask1 = ~0 ^ (1 << (newIndex%BITS_PER_WORD));
 tempNew = _buffer[newIndex/BITS_PER_WORD] & mask1;
 mask1 = ~mask1;
 tempNew |= (_buffer[oldIndex/BITS_PER_WORD] & mask1);

 mask2 = ~0 ^ (1 << (oldIndex%BITS_PER_WORD));
 tempOld = _buffer[oldIndex/BITS_PER_WORD] & mask2;
 mask2 = ~mask2;
 tempOld |= (_buffer[newIndex/BITS_PER_WORD] & mask2);

 _buffer[newIndex/BITS_PER_WORD] = tempNew;
 _buffer[oldIndex/BITS_PER_WORD] = tempOld;
 }

 return;
}

void BitBuffer::printBuffer() {
 #ifdef enable_debug_mode
 if(*_length > 100) {
 printf("Buffer larger than 100 bits, you probably don't want this
printed.\n");
 return;
 }
 #endif

 for(unsigned int i=0; i < *_length; i++) {
 printf("%d", getBit(i));
 }
 printf("\n");

 return;
}

void BitBuffer::ClearBuffer(void) {
 for(unsigned int i=0; i<*_length/BITS_PER_WORD; i++)
 _buffer[i]=0;
}

#ifdef using_bitmask

void BitBuffer::InitializeBitMask(void) {
#if BYTES_PER_WORD==4
 _bitMask[0]= 0x00000001;
 _bitMask[1]= 0x00000002;
 _bitMask[2]= 0x00000004;
 _bitMask[3]= 0x00000008;
 _bitMask[4]= 0x00000010;
 _bitMask[5]= 0x00000020;
 _bitMask[6]= 0x00000040;

85

 _bitMask[7]= 0x00000080;
 _bitMask[8]= 0x00000100;
 _bitMask[9]= 0x00000200;
 _bitMask[10]=0x00000400;
 _bitMask[11]=0x00000800;
 _bitMask[12]=0x00001000;
 _bitMask[13]=0x00002000;
 _bitMask[14]=0x00004000;
 _bitMask[15]=0x00008000;
 _bitMask[16]=0x00010000;
 _bitMask[17]=0x00020000;
 _bitMask[18]=0x00040000;
 _bitMask[19]=0x00080000;
 _bitMask[20]=0x00100000;
 _bitMask[21]=0x00200000;
 _bitMask[22]=0x00400000;
 _bitMask[23]=0x00800000;
 _bitMask[24]=0x01000000;
 _bitMask[25]=0x02000000;
 _bitMask[26]=0x04000000;
 _bitMask[27]=0x08000000;
 _bitMask[28]=0x10000000;
 _bitMask[29]=0x20000000;
 _bitMask[30]=0x40000000;
 _bitMask[31]=0x80000000;
#elif BYTES_PER_WORD == 8
 _bitMask[0]= 0x0000000000000001;
 _bitMask[1]= 0x0000000000000002;
 _bitMask[2]= 0x0000000000000004;
 _bitMask[3]= 0x0000000000000008;
 _bitMask[4]= 0x0000000000000010;
 _bitMask[5]= 0x0000000000000020;
 _bitMask[6]= 0x0000000000000040;
 _bitMask[7]= 0x0000000000000080;
 _bitMask[8]= 0x0000000000000100;
 _bitMask[9]= 0x0000000000000200;
 _bitMask[10]=0x0000000000000400;
 _bitMask[11]=0x0000000000000800;
 _bitMask[12]=0x0000000000001000;
 _bitMask[13]=0x0000000000002000;
 _bitMask[14]=0x0000000000004000;
 _bitMask[15]=0x0000000000008000;
 _bitMask[16]=0x0000000000010000;
 _bitMask[17]=0x0000000000020000;
 _bitMask[18]=0x0000000000040000;
 _bitMask[19]=0x0000000000080000;
 _bitMask[20]=0x0000000000100000;
 _bitMask[21]=0x0000000000200000;
 _bitMask[22]=0x0000000000400000;
 _bitMask[23]=0x0000000000800000;
 _bitMask[24]=0x0000000001000000;
 _bitMask[25]=0x0000000002000000;
 _bitMask[26]=0x0000000004000000;

86

 _bitMask[27]=0x0000000008000000;
 _bitMask[28]=0x0000000010000000;
 _bitMask[29]=0x0000000020000000;
 _bitMask[30]=0x0000000040000000;
 _bitMask[31]=0x0000000080000000;
 _bitMask[32]=0x0000000100000000;
 _bitMask[33]=0x0000000200000000;
 _bitMask[34]=0x0000000400000000;
 _bitMask[35]=0x0000000800000000;
 _bitMask[36]=0x0000001000000000;
 _bitMask[37]=0x0000002000000000;
 _bitMask[38]=0x0000004000000000;
 _bitMask[39]=0x0000008000000000;
 _bitMask[40]=0x0000010000000000;
 _bitMask[41]=0x0000020000000000;
 _bitMask[42]=0x0000040000000000;
 _bitMask[43]=0x0000080000000000;
 _bitMask[44]=0x0000100000000000;
 _bitMask[45]=0x0000200000000000;
 _bitMask[46]=0x0000400000000000;
 _bitMask[47]=0x0000800000000000;
 _bitMask[48]=0x0001000000000000;
 _bitMask[49]=0x0002000000000000;
 _bitMask[50]=0x0004000000000000;
 _bitMask[51]=0x0008000000000000;
 _bitMask[52]=0x0010000000000000;
 _bitMask[53]=0x0020000000000000;
 _bitMask[54]=0x0040000000000000;
 _bitMask[55]=0x0080000000000000;
 _bitMask[56]=0x0100000000000000;
 _bitMask[57]=0x0200000000000000;
 _bitMask[58]=0x0400000000000000;
 _bitMask[59]=0x0800000000000000;
 _bitMask[60]=0x1000000000000000;
 _bitMask[61]=0x2000000000000000;
 _bitMask[62]=0x4000000000000000;
 _bitMask[63]=0x8000000000000000;
#endif
}

#endif

87

Appendix D: Winnow Class Code

/*
 * Kevin Lustic
 * Air Force Institute of Technology
 * Winnow.cpp
 *
 * Created on: Mar 18, 2011
 * Last Updated: Mar 30, 2011
 *
 * This code can be found on the accompanying disc as well.
 */

#ifndef WINNOW_H_
#define WINNOW_H_

#include "BitBuffer.h"

class Winnow {
public:
 Winnow();
 Winnow(BitBuffer *, unsigned int);
 virtual ~Winnow();

 int firstPass();
 int nextPass();
 double setBlockSchedule(unsigned int);

 // Parity operation methods
 void getParities(BitBuffer *);
 void discardParityBits();
 unsigned int disagreeingBlockParities(BitBuffer *, BitBuffer *, int *);

 // Syndrome operation methods
 void printMatrix();
 void fixWithSyndrome(unsigned int, unsigned int);
 void discardSyndromeBits (unsigned int);
 void discardSyndromeBits (int *, unsigned int);
 unsigned int getSyndrome(unsigned int);

 // Misc getter methods
 void getCurrentKey(BitBuffer *);
 void getBlockSizeSchedule(unsigned int *);
 unsigned int getCurrentKeyLength();
 unsigned int getBitsExposed();
 unsigned int getNetBitsExposed();
 unsigned int numRemainingErrors(BitBuffer *);
 unsigned int getNumRemainingPasses();

 // BitBuffer wrappers
 void setSeedValue(unsigned int);
 unsigned int getSeedValue();

private:

88

 bool _setterLocked;
 BitBuffer *_keyString;
 unsigned int _blockSize;
 unsigned int _numOfBlocks;
 unsigned int _bitsExposed;
 unsigned int _netBitsExposed;
 unsigned int _syndromeLength;
 unsigned int *_blockSizeSchedule;
 unsigned int **_parityCheckMatrix;

 void createMatrix();
};

#endif /* WINNOW_H_ */

89

/*
 * Kevin Lustic
 * Air Force Institute of Technology
 * Winnow.cpp
 *
 * Created on: Mar 18, 2011
 * Last Updated: May 18, 2011
 *
 * This code can be found on the accompanying disc as well.
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "Winnow.h"

#define permute_bits_before_first_pass
#define permute_bits_between_passes

Winnow::Winnow() {
 printf("Default constructor for Winnow... use other constructor.\n");
}

/*
 * The constructor
 *
 * Input: Sifted key
 *
 * - Initializes the Winnow class's member bit buffer
 * - Sets block size to 8 bits, for initial error estimation
 * - Sets bits exposed and net bits exposed to 0. These track Eve's info gain
from Winnowing *
 */
Winnow::Winnow(BitBuffer *rawKey, unsigned int permSeed) {
 _keyString = rawKey;
 _keyString->setSeed(permSeed);

 _bitsExposed = 0;
 _netBitsExposed = 0;
 _setterLocked = false;

// _blockSizeSchedule = new unsigned int[8];

}

Winnow::~Winnow() {}

/*
 * Winnow::firstPass
 *
 * Prepares for the first pass. This includes initializing the block size
schedule,

90

 * determining the initial blocksize, syndrome length, and number of blocks,
and
 * generating the parity-check matrix.
 */
int Winnow::firstPass() {

 // For the first pass, we will always choose a block size of 8
 _syndromeLength = 3;
 _blockSize = 8;

 // Note that this number does not include an incomplete final block
 _numOfBlocks = _keyString->getLength()/_blockSize;

 // Generation of the parity-check matrix
 createMatrix();

 // Permute the bits in the key buffer
 #ifdef permute_bits_before_first_pass
 _keyString->permuteBuffer();
 #endif

 return 0;
}

/*
 * Winnow::nextPass
 *
 * Before the next pass of Winnow is performed this function is called. This
function
 * adjusts the blocksize according the schedule, creates the new parity check
matrix and
 * adjusts any other values related to the block size.
 */
int Winnow::nextPass() {

 for(int i=0; i<8; i++) {
 if(_blockSizeSchedule[i] > 0) {
 _syndromeLength = (unsigned int)(i+3);
 _blockSize = 1<<_syndromeLength;
 _blockSizeSchedule[i]--;
 break;
 }
 else if (i>=7) {
 // We reached end of schedule with no block choices left
 printf("Time to terminate.\n");
 return (-1);
 }
 }

 _numOfBlocks = _keyString->getLength()/_blockSize;
 createMatrix();

 // Permute the bits in the key buffer

91

 #ifdef permute_bits_between_passes
 _keyString->permuteBuffer();
 #endif

 return 0;
}

/*
 * Winnow::getCurrentKeyLength()
 *
 * Output: Length of the current key.
 */
unsigned int Winnow::getCurrentKeyLength() {
 return _keyString->getLength();
}

/*
 * Winnow::getNumRemainingPasses
 *
 * Output: Number of passes left
 *
 * Returns the number of passes left according to block schedule. This
function
 * is responsible for the termination of the algorithm.
 */
unsigned int Winnow::getNumRemainingPasses() {
 unsigned int count=0;

 for(int i=0; i<8; i++)
 count += _blockSizeSchedule[i];

 return count;
}

/*
 * Winnow::getParities
 *
 * Input: BitBuffer *
 * Output: void
 *
 * Gets the parities for each of the blocks, and stores them in the BitBuffer
 * that is passed by reference. The indices of the bit buffer correspond to
the
 * block number of the parity bit stored there.
 */
void Winnow::getParities(BitBuffer *parityBuffer) {
 parityBuffer->setLength(_numOfBlocks);

 unsigned int start=0, end=0;
 unsigned int parity=0;

92

 // Iterate through the blocks. Note we ignore the last block if it is
not a full block.
 for(unsigned int i=0; i < _numOfBlocks; i++) {
 start = i*_blockSize;
 end = start+_blockSize-1;

 parity = _keyString->getParity(start,end); // Parity of bits from
start->end, inclusive

 // Each parity bit is counted as a bit exposed
 _bitsExposed++;
 _netBitsExposed++;

 // Update our parity buffer
 if(parity==1)
 parityBuffer->setBit(i);
 else {
 parityBuffer->clearBit(i);
 }
 }

 return;
}

/*
 * Winnow::disagreeingBlockParities
 *
 * Input: Alice's parity buffer, Bob's parity buffer, array of integers
 * Output: The number of blocks containing an odd number of errors
 *
 * Determines the block numbers of blocks where Alice and Bob's parities do
not match,
 * and store those block numbers in the array of integers (the third
argument).
 */
unsigned int Winnow::disagreeingBlockParities(BitBuffer *aliceParities,
BitBuffer *bobParities, int *mismatches) {
 unsigned int counter = 0;

 // Ensure we are passed valid buffers to compare
 if(aliceParities->getLength() != bobParities->getLength()) {
 printf("Incompatible buffers... cannot determine if they
disagree.\n");
 }

 else {
 for(unsigned int i=0; i < aliceParities->getLength(); i++) {

 // If Alice/Bob have parities that don't match, add the
index (block #) to our list
 if(aliceParities->getBit(i) != bobParities->getBit(i)) {
 mismatches[counter]=i;
 counter++;

93

 }
 }
 }

 return counter;
}

/*
 * Winnow::discardParityBits
 *
 * Input: (void)
 * Output: (void)
 *
 * Discards a bit from each block as a part of the Winnow privacy maintenance.
This
 * implementation discards the first bit from each block, for ease of coding.
Discard
 * is performed by copying the bits of each block which aren't part of the key
string
 * backwards.
 *
 * Note that the final block is ignored if incomplete.
 */
void Winnow::discardParityBits() {
 unsigned int newIndex=0;

 for(unsigned int i=0; i<_keyString->getLength(); i++) {
 if(i%_blockSize == 0 && i != _numOfBlocks*_blockSize) {
 // We want to remove this bit. Do not copy it.
 _netBitsExposed--;
 }

 // If it isn't the first bit in the block, copy it.
 else {
 if(_keyString->getBit(i)==1)
 _keyString->setBit(newIndex);
 else {
 _keyString->clearBit(newIndex);
 }
 newIndex++;
 }
 }

 // New block size, since we deleted one bit from each
 _blockSize--;

 // New length of key, since we delete one bit per block
 _keyString->setLength(_keyString->getLength()-_numOfBlocks);

 return;
}

94

/*
 * Winnow::createMatrix
 *
 * Function for generating the parity check matrix that Alice uses for
computing
 * syndromes, and that Bob uses for correcting errors.
 */

void Winnow::createMatrix() {
 int blockSize = (1<<_syndromeLength)-1;

 _parityCheckMatrix = new unsigned int*[_syndromeLength];

 for(unsigned int i=0; i<_syndromeLength; i++) {
 _parityCheckMatrix[i] = new unsigned int[blockSize];
 }

 for(unsigned int i=0; i<_syndromeLength; i++) {
 for(int j=1; j<=blockSize; j++) {
 _parityCheckMatrix[i][j-1] = j/(1<<i) & 0x1;
 }
 }

 return;
}

/*
 * Winnow::getSyndrome
 *
 * Input: The block number of the block for which to calculate the syndrome
 * Output: The syndrome, in unsigned int form
 *
 * The syndrome is returned as an unsigned integer. The blocksize would have
to
 * be 2^32-1 to break this method, which is an unrealistic block size in
practice.
 * Unsigned integers for this purpose is less unwieldy than, say, a separate
buffer
 * for every syndrome.
 *
 * An example is a syndrome of '1 1 0' would be returned as '6' rather than a
 * three-element buffer.
 */
unsigned int Winnow::getSyndrome(unsigned int blockNumber) {
 // Ensure the block number is legal
 if(blockNumber > _numOfBlocks) {
 printf("Illegal block number. Returning blockSize+1 for new
syndrome.\n");
 return (_blockSize+1);
 }

 unsigned int temp=0;
 unsigned int newSyndrome=0;

95

 // Compute the highest order bit of the syndrome first and work down
 for(int i=_syndromeLength-1; i>=0; i--) {
 newSyndrome <<= 1; // Push previous bit up

 // Multiply the block by the (i-1)th row of the parity check
matrix
 for(unsigned int j=0; j<_blockSize; j++) {
 temp = (temp + _parityCheckMatrix[i][j]*_keyString-
>getBit(blockNumber*_blockSize+j)) & 0x1;
 }

 newSyndrome += temp; // Add the resulting sum to the syndrome

 temp=0;
 }

 // Number of bits exposed is equal to the number of bits in the syndrome
 _bitsExposed+=_syndromeLength;
 _netBitsExposed+=_syndromeLength;

 return newSyndrome;
}

/*
 * Winnow::fixWithSyndrome
 *
 * Input: the number of the block containing the error, Alice's syndrome of
that block
 *
 * This is used by Bob. Bob computes the syndrome of his block, and xor's it
with the
 * syndrome from Alice. The result is an offset pointing to the exact location
of the
 * erroneous bit, if the first bit of the block is considered to be at
position '1'.
 */
void Winnow::fixWithSyndrome(unsigned int blockNumber, unsigned int syndrome)
{
 // Get the syndrome of the corresponding block
 unsigned int mySyndrome = this->getSyndrome(blockNumber);

 // Store in syndromesyndrome the result of xor-ing the two syndromes.
This will
 // give an offset representing the location of the error to fix
 syndrome ^= mySyndrome;

 if(syndrome==0) { /* The error was discarded in the parity cleanup! */ }

 else
 _keyString->flipBit(blockNumber*_blockSize+(syndrome-1));

 return;

96

}

/*
 * Winnow::discardSyndromeBits
 *
 * Input: block numbers of the blocks for which to discard the bits, number of
said blocks
 *
 * The bits at indices of the form 2^j-1 are removed. These correspond to the
 * linearly independent columns of the parity check matrix. Note that this
 * appears to be O(n^2) but the inner for loop is deceiving. This operation
 * is just O(n).
 */
void Winnow::discardSyndromeBits(int *errorBlocks, unsigned int length) {
 unsigned int errorBlocksCounter=0, newCounter=0,oldCounter=0;
 for(unsigned int i=0; i<_numOfBlocks; i++) {
 if(errorBlocksCounter<length && errorBlocks[errorBlocksCounter]
== (int)i) {
 errorBlocksCounter++;
 unsigned int power=0;

 // Iterate through the block
 for(unsigned int j=0; j<_blockSize; j++) {

 if(j+1 == (unsigned int)(1<<power)) {
 _netBitsExposed--;
 power++;
 oldCounter++;
 }

 else {
 if(_keyString->getBit(oldCounter))
 _keyString->setBit(newCounter);
 else {
 _keyString->clearBit(newCounter);
 }

 newCounter++;
 oldCounter++;
 }
 } // end for
 } //end if

 else {
 if(_keyString->getBit(oldCounter))
 _keyString->setBit(newCounter);
 else {
 _keyString->clearBit(newCounter);
 }
 newCounter++;
 oldCounter++;
 } //end else
 } //end for

97

 while (oldCounter < _keyString->getLength()) {
 if(_keyString->getBit(oldCounter))
 _keyString->setBit(newCounter);
 else {
 _keyString->clearBit(newCounter);
 }
 newCounter++;
 oldCounter++;
 }

 _keyString->setLength(newCounter);

 return;
}

/*
 * Winnow::getCurrentKey
 *
 * Input: BitBuffer pointer
 *
 * Copies the current key stored in _keyString into myBuf
 */
void Winnow::getCurrentKey(BitBuffer *myBuf) {
 myBuf = _keyString;
 return;
}

/*
 * Winnow::getBitsExposed
 *
 * Returns the gross number of bits exposed.
 */
unsigned int Winnow::getBitsExposed() {
 return _bitsExposed;
}

/*
 * Winnow::getNetBitsExposed
 *
 * Returns the net number of bits exposed (gross number - bits discarded)
 */
unsigned int Winnow::getNetBitsExposed() {
 return _netBitsExposed;
}

/*
 * Winnow::numRemainingErrors
 *
 * Input: BitBuffer containing the key to compare to the member keystring

98

 * Output: number of places where the two strings do not match
 *
 * This is only used for statistics collection and verification of algorithm
 * effectiveness; it won't be used in practice.
 */
unsigned int Winnow::numRemainingErrors(BitBuffer *otherBuffer) {
 unsigned int counter=0;

 for(unsigned int i=0; i<_keyString->getLength(); i++) {
 if(otherBuffer->getBit(i) != _keyString->getBit(i))
 counter++;
 }

 return counter;
}

/*
 * Winnow::printMatrix
 *
 * Used to display the parity check matrix, for debugging.
 */
void Winnow::printMatrix() {
 printf("Parity-Check matrix:\n");
 for(unsigned int i=0; i<_syndromeLength; i++) {
 for(unsigned int j=0; j<_blockSize; j++) {
 printf("%d ",_parityCheckMatrix[i][j]);
 }
 printf("\n");
 }
 return;
}

/*
 * BitBuffer wrappers
 *
 * These are accessor wrappers for determining and setting the seed used for
 * the random permutation of the bits.
 */

void Winnow::setSeedValue(unsigned int seed) {
 _keyString->setSeed(seed);
}

unsigned int Winnow::getSeedValue() {
 return _keyString->getSeed();
}

double Winnow::setBlockSchedule(unsigned int pe) {

 if(_setterLocked) {
 printf("Winnow::setBlockSchedule -> You shouldn't be accessing
this!\n");

99

 return .01;
 }

 _setterLocked = true;

 long double newRate;
 long double bl = (long double)_numOfBlocks;

 newRate = (bl-2*pe)/bl;
 newRate = .5L*(1-pow(newRate,.125L));

 _blockSizeSchedule = new unsigned int[8];

 if(newRate <= 0.01) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 1;
 _blockSizeSchedule[7] = 2;
 }

 else if(newRate <= 0.02) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 1;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.03) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.04) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;

100

 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.05) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 1;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.06) {
 _blockSizeSchedule[0] = 1;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 2;
 }

 else if(newRate <= 0.07) {
 _blockSizeSchedule[0] = 2;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.08) {
 _blockSizeSchedule[0] = 2;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.09) {
 _blockSizeSchedule[0] = 2;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;

101

 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 1;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.10) {
 _blockSizeSchedule[0] = 2;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.11) {
 _blockSizeSchedule[0] = 3;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.12) {
 _blockSizeSchedule[0] = 3;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.13) {
 _blockSizeSchedule[0] = 3;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 1;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.14) {
 _blockSizeSchedule[0] = 3;
 _blockSizeSchedule[1] = 1;

102

 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.15) {
 _blockSizeSchedule[0] = 4;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.16) {
 _blockSizeSchedule[0] = 4;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.17) {
 _blockSizeSchedule[0] = 4;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.18) {
 _blockSizeSchedule[0] = 5;
 _blockSizeSchedule[1] = 0;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else if(newRate <= 0.19) {

103

 _blockSizeSchedule[0] = 5;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 0;
 _blockSizeSchedule[3] = 1;
 _blockSizeSchedule[4] = 0;
 _blockSizeSchedule[5] = 1;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 1;
 }

 else {
 _blockSizeSchedule[0] = 5;
 _blockSizeSchedule[1] = 1;
 _blockSizeSchedule[2] = 1;
 _blockSizeSchedule[3] = 0;
 _blockSizeSchedule[4] = 1;
 _blockSizeSchedule[5] = 0;
 _blockSizeSchedule[6] = 2;
 _blockSizeSchedule[7] = 2;
 }

 _blockSizeSchedule[0]--;

 return (double)newRate;
}

void Winnow::getBlockSizeSchedule(unsigned int *bss) {

 bss[0] = _blockSizeSchedule[0]+1;
 for(int i=1; i<8; i++)
 bss[i] = _blockSizeSchedule[i];

 return;
}

104

Bibliography

Ardehali, M., Chau, H. F., & Lo, H.-K. (1999, Jan 29). arXiv:quant-ph/9803007v4.

Retrieved Mar 4, 2011

Bennett, C. H., & Brassard, G. (1984). Quantum Cryptography: Public Key Distribution

and Coin Tossing. International Conference on Computers, Systems & Signals

Processing. Bangalore, India.

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., & Smolin, J. (1992). Experimental

quantum cryptography. Journal of Cryptology , 5 (1), 3-28.

Bernstein, D. J., Buchmann, J., & Dahmen, E. (Eds.). (2010). Post-Quantum

Cryptography. Berlin: Springer-Verlag Berlin Heidelberg.

Brassard, G. (1993). A bibliography of quantum cryptography. ACM SIGACT News , 24

(3), 16-20.

Brassard, G., & Salvail, G. (1994). Secret-key reconciliation by public discussion.

Workshop on the theory and application of cryptographic techniques on Advances

in cryptology (pp. 410-423). Lofthus, Norway: Springer-Verlag.

Buttler, W. T., Lamoreaux, J. R., Torgerson, J. R., Nickel, G. H., Donahue, C. H., &

Peterson, C. G. (2003). Fast, efficient error reconciliation for quantum

cryptography. Physical Review A , 67 (5).

Chen, K. (2000, Aug). Improvement of Reconciliation for Quantum Key Distribution.

Master's Thesis . Rochester Institute of Technology.

Hankerson, D. R., Hoffman, D. G., Leonard, D. A., Lindner, C. G., Phelps, K. T.,

Rodger, C. A., et al. (1991). Coding Theory and Cryptography: The Essentials.

New York: Marcel Dekker.

Kleinjung, T., & others. (2010, Feb 18). Retrieved Mar 13, 2011, from

http://eprint.iacr.org/2010/006.pdf

Kollmitzer, C., & Pivk, M. (Eds.). (2010). Applied Quantum Cryptography. Lecture

Notes in Physics , 797 , 1. Springer, Berlin Heidelberg.

Nakassis, A., Bienfang, J., & Williams, C. (2004). Expeditious reconciliation for practical

quantum key distribution. Quantum Information and Computation, Proc. SPIE

5436.

Nguyen, K.-C. (2002). Extension des Protocoles de Réconciliation en Cryptographie

Quantique. Masters thesis . Université Libre de Bruxelles.

Politi, A., Matthews, J. C., & O'Brien, J. L. (2009, September 4). Shor's Quantum

Factoring Algorithm on a Photonic Chip. Science , p. 1221.

Shannon, C. (1949). Communication Theory of Secrecy Systems. Bell System Technical

Journal , 28, 656-715.

105

Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms and

Factoring., 35, p. 124.

Sugimoto, T., & Yamazaki, K. (2000). A study on secret key reconciliation protocol

"cascade". IEICE Trans. Fundamentals , E83-A (10), 1987-1991.

Van Assche, G. (2006). Quantum Cryptography and Secret-Key Distillation. Cambridge:

Cambridge University Press.

Wegman, M. N., & Carter, J. L. (1981). New hash functions and their use in

authentication and set equality. Journal of Computer and System Sciences , 265-

279.

Wiesner, S. (1983, Winter-Spring). Conjugate Coding. ACM SIGACT News - A Special

Issue on Cryptography , 15 (1), pp. 78-80.

Yamazaki, K., Nair, R., & Yuen, H. P. (2006). Problems of the CASCADE Protocol and

Renyi Entropy Reductions in Classical and Quantum Key Generation. QCMC .

arXiv:quant-ph/0703012.

Yan, H., Peng, X., Lin, X., Jiang, W., Liu, T., & Guo, H. (2009). Efficiency of Winnow

Protocol in Secret Key Reconciliation. Computer Science and Information

Engineering, WRI World Congress, 7, pp. 238-242. Los Angeles.

Zhao, F., Fu, M., Wang, F., Lu, Y., Liao, C., & Liu, S. (2007). Error reconciliation for

practical quantum cryptography. Optik , 118 (10), 502-506.

106

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
16-06-2011

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Jan 2011 – May 2011

4. TITLE AND SUBTITLE
Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kevin C Lustic

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
AFIT/ENG
2950 Hobson Way
WPAFB, OH 45433

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GCO/ENG11-08

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Information withheld

10. SPONSOR/MONITOR’S
ACRONYM(S)
Information withheld

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)
Information withheld

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
Currently, private communications in public and government sectors rely on methods of cryptographic key distribution that will likely be rendered obsolete the

moment a full-scale quantum computer is realized, or efficient classical methods of factoring are discovered. There are alternative methods for distributing
secret key material in a “post-quantum” era. One example of a system capable of securely distributing cryptographic key material, known as Quantum Key

Distribution (QKD), is secure against quantum factorization techniques as its security rests on generally accepted laws of quantum physics. QKD protocols

typically include a phase called “Error Reconciliation”, a clear-text classical-channel discussion between legitimate parties of a QKD protocol by which errors
introduced in the quantum channel are corrected and the legitimate parties ensure they share identical key material. This work improves one such

reconciliation protocol, called Winnow, by examining block-size choices for Winnow and thus increasing QKD key rate. Block sizes are chosen to maximize

the probability that each block contains exactly one error. Further analyses of Winnow are provided to characterize the effects of different error distributions
on protocol operation and shed light on the time and communication complexities of the Winnow secret key reconciliation protocol.

15. SUBJECT TERMS
QKD, quantum key distribution, Winnow, error correction, error reconciliation, adaptive, block size selection

16. SECURITY CLASSIFICATION
OF: UNCLASSIFIED

17. LIMITATION OF
 ABSTRACT

 UU

18. NUMBER
 OF
 PAGES

 117

19a. NAME OF RESPONSIBLE PERSON
Lt Col Jeffrey Humphries

REPORT

U
ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937)785-6565x7253

Jeffrey.Humphries@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

